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Abstract 
A Roe flux-difference splitting scheme with an entropy and shock fixes (RoeVLPA) for high-speed 
compressible flow analysis on structured triangular grid is presented. The proposed method heals nonphysical 
flow solutions such as the carbuncle phenomenon, the shock instability from the odd-even decoupling problem, 
and the expansion shock generated from the violated entropy condition. The proposed scheme is further 
extended to obtain higher-order spatial and temporal solution accuracy. A computational model of a shock 
tube being used in laboratory is presents to investigate the characteristics of the shock wave.  
The performance and efficiency of the proposed method are evaluated by solving several shock tube problems. 
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1 Introduction

In general all fluids are naturally compressible  
but they are categorized into compressible and 
incompressible fluids, depending on their degree of 
compressibility. A fluid whose density varies in an 
appreciable amount under high pressure load is called 
a compressible fluid, and the main difference 
between compressible and incompressible fluids is 
the rate at which forces are transmitted through  
the fluid itself [1]. Currently, compressible flows 
including shock waves are present in numerous 
situations. Then the problem of a fixed shock in a 
steady flow can simply be modelled and the solution 
consists in the Rankine-Hugoniot relationships. A 
pressure disturbance transmits in the form of 
successive compression and rarefaction waves due to 
its elastic in nature. This pressure disturbance is 
called a finite disturbance when a perturbation in the 
thermodynamic state of quiescent gas causes 
variations in pressure and density the same order as 
that of values of pressure and density. When the 
strength of a disturbance becomes large enough, the 
speed of the wave may increases beyond the speed of 
a sound wave, and this generated wave of higher 
amplitude is called a shock wave. 
A shock tube is equipment for generating gas flows 
of very short duration, and commonly used to 
generate shock or blast waves in the laboratory. It 

consists of a tube of constant cross section in which a 
diaphragm initially separates two bodies of gas at 
different pressures. Rapid removal of the diaphragm 
generates a flow of short duration containing waves 
of finite amplitude separated by quasi-steady regions. 
Initially, a shock wave travels into the low pressure 
gas while an expansion or rarefaction wave travels 
into the high pressure gas. The quasi-steady flow 
regions induced behind these waves are separated by 
a contact surface across which pressure and velocity 
are equal. 
During the past decades, a variety of shock-capturing 
schemes have been developed for solving the Euler 
equations of gas dynamics. The Godunov method has 
been widely used and shown to produce high 
precision for simulations of complex shock 
phenomena. However, the method has some 
weakness and may fail or produce physically 
unrealistic numerical solutions for some problems. 
These problems include the high Mach number flow 
past a blunt body [2], and the moving shock in a 
straight duct from an odd-even grid perturbation [3]. 
Similar to the Godunov method, the original Roe 
scheme [4] has been widely employed and applied to 
solve complex flow problems. The scheme was also 
found to produce physically unrealistic expansion 
shock for flow over a forward facing step because it 
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does not satisfy the entropy condition [5].  
Some numerical experiments have shown that the 
extension of the one-dimensional upwind scheme to 
multidimensional problems often yields poor stationary 
shock at high Mach number aligned with the structured 
mesh. To overcome this problem, [5-10] proposed the 
entropy fix formulation to replace the near zero 
eigenvalues by some tolerances. 
The main objective of this paper is to study shock 
tube problem by using a Roe flux-difference splitting 
scheme with an entropy and shock fixes (RoeVLPA) 
[9] on two-dimensional structured triangular grids. 
The entropy and shock fix methods [4,6] are 
modified herein for triangular mesh and implemented 
into the original Roe scheme so called RoeVLPA 
scheme. The presentation in this paper starts from 
Section 2 describing the Euler equations used in the 
analysis of high-speed compressible flows and the 
solution procedure that lead to the computer program 
development. Then the Roe scheme with entropy and 
shock fix methods is then presented. Finally, the 
proposed method is further extended to achieve 
higher-order solution accuracy and then evaluated by 
several benchmark test cases in Section 3 for solving 
several shock tube problems. 
 
2 Roe scheme with entropy and shock fixes 

formulation 

The governing differential equations of the Euler 
equations for the two-dimensional inviscid flow are 
given by, 
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where U  is the vector of conservation variables,  
E  and G  are the vectors of the convection fluxes in 
x and y directions, respectively. The perfect gas 
equation of state is in the form, 

( )1−= γρep  (2) 

where p  is the pressure, ρ  is the density, e  is the 
internal energy, and γ  is the specific heat ratio (1.4 
for air). 
By integrating Eq. (1) over a control volume, Ω , and 
applying the divergence theorem to the resulting flux 
integral, 
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where F  is the numerical flux vector and n̂  is the 
normal unit vector to the cell boundary. The 
numerical flux vector at the cell interface between the 
left cell L and the right cell R according to the Roe 
scheme [4] is written as 
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where  T
nnnnk aVVVaVλ +−= , kα  is the 

wave strength of the kth wave, kr  is the 

corresponding right eigenvector, nV  is the normal 
velocity, and a  is the speed of sound at the cell 
interface. 
This paper proposes a Roe with entropy and shock 
fixes (RoeVLPA) that combines the entropy fix 
methods of Van Leer et al. [6] and Pandolfi and 
D'Ambrosio [5] by modifying the original 
eigenvalues as follows: 
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where  
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The constant value κ  is usually less than or equal to 
one for the first-order scheme and more than one for 
higher-order scheme. After performing the numerical 
experiment, the value of κ  is problem dependent in 
case of the higher-order scheme. An appropriate 
range of κ  for the higher-order scheme is between 
1.5 and 6.5, with the recommended value of 2. The 
sensitivity of the value of κ  to the density and 
pressure perturbations for the odd-even decoupling 
problem is investigated [9], where the higher values 
of κ  yields more damping rate for the density and 
pressure perturbations. Thus for simplicity, the value 
of κ  is taken to be one throughout this paper, or 
otherwise a certain value is specified when 
appropriate. 
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3 High-order Numerical Scheme  

Solution accuracy from the first-order formulation 
described in the preceding sections can be improved 
by implementing a high-order formulation for  
both the space and time. A high-order spatial 
discretization is achieved by applying the Taylor' 
series expansion to the cell-centered solution for each 
cell face [11], and can be reconstructed from, 

rqqq ⋅∇+= ψcentroidface  (8) 

where [ ]Tpvuρ=q  consists of the primitive 
variables of the density, the velocity components, and 
the pressure, respectively; q∇  represents the 
gradient of the variables, and r  is the vector 
projected to the given cell face. The ψ  in Eq. (8) 
represents the limiter, preventing spurious oscillation 
that may occur in the region of high gradients. In this 
study, Vekatakrishnan's limiter function [12] is 
selected, 
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where ic qq −=−∆ , iqq −=+ maxmax,∆ , and 

iqq −=+ minmin,∆ .  The maxq  and minq  are 
respectively the maximum and minimum values of 
all distance-one neighboring cells.   The function φ is 
expressed in the form, 
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And the second-order temporal accuracy is achieved 
by implementing the second-order accurate Runge-
Kutta time stepping method [13], 
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where t∆  is the time step. 
 

4 Shock Tube Problem Results 

The high-order extension of the RoeVLPA scheme 
presented in the preceding section is evaluated by 
solving several shock tube problems. From the 
solution of Riemann problems one finds directly how 
much velocity, density, and pressure flows into a cell 
from the interface under consideration. This section 
shows simulation of gas dynamic problems to study 
the effects of Riemann problems on the physical 
properties for the perfect gas. These selected test 
cases are: (1) Sod shock tube, (2) Strong shock 
problem, and (3) Symmetric rarefaction wave 
problem. 

 
(a) O(1) of density 

 
(b) O(2) of density 

Figure 1: Comparision of exact and numerical 
solutions of density. 

 
4.1 Sod shock tube 

The one-dimensional shock tube test case, the so 
called Sod shock tube [14], is solved by using a two-
dimensional domain. The Sod shock tube is a 
Riemann problem used as a standard test problem. 
The initial conditions of the fluids on the left and  
right sides are given by )1,0,1(),,( =Lpuρ  and 

 

0

0.5

1.0

0 0.5 1.0

x

ρ

 

x

ρ 

0

0.5

1.0

0 0.5 1.0



 
Phongthanapanich S. / AIJSTPME (2013) 6(3): 75-81 

 
78 

)1.0,0,125.0(),,( =Rpuρ . The 1.01×  computational 
domain is discretized with uniform triangular elements 
into 400 and 40 equal intervals in the x and y directions, 
respectively. Figures 1(a)-(b) to 3(a)-(b) show the 
numerical density, pressure, and x-velocity distributions 
along the tube length and are compared with the exact 
solutions at time 15.0=t . The figures show that the 
rarefaction wave is moving to the left.  
The solution is continuous in this region but some of 
the derivatives of the fluid quantities may not be 
continuous.  The shock wave is moving to the right, 
and across a shock all quantities will in general be 
discontinuous. The discontinuous between a shock 
and a tail of rarefaction wave as shown in Figures 
1(a)-(b) is called a contact discontinuity. The figures 
show that the contact surface is spread out due to the 
numerical viscosity of the numerical scheme. Finally, 
the figures show that the high-order extension of the 
RoeVLPA scheme provides more accurate solutions 
than the first-order solutions. 

 
(a) O(1) of pressure 

 

 
(b) O(2) of pressure 

Figure 2: Comparison of exact and numerical 
solutions of pressure. 

 
(a) O(1) of x-velocity 

 
(b) O(2) of x-velocity 

Figure 3: Comparison of exact and numerical 
solutions of x-velocity. 

 
4.2 Strong shock problem 

The one-dimensional strong shock problem [15] is 
simulated on a 1.01×  domain, which discretized by 
uniform triangular elements ( 40400× ). The initial 
conditions are given by )1000,0,1(),,( =Lpuρ  and 

)01.0,0,1(),,( =Rpuρ . Because of the very strong 
shock wave, the validity of the perfect gas equation 
of state may be questioned, but the purpose of using 
this test case is for numerical experiment to evaluate 
the different schemes. Another reason for choosing 
this problem is that the shock and the contact 
discontinuity are very closed to each other, within 
only about nine elements. It is thus very difficult for 
most of the numerical schemes to capture both the 
shock and the contact discontinuity within such a few 
elements. Figures 4(a)-(c) shows that the higher-
order solutions of density, pressure, and x-velocity, 
respectively are improved but are still yielding 
oscillations slightly near the expansion fan and the 
contact discontinuity. 

 

x

p 

0

0.5

1.0

0 0.5 1.0

 

x

p 

0

0.5

1.0

0 0.5 1.0

 

x

u 

0

0.5

1.0

0 0.5 1.0

 

x

u 

0

0.5

1.0

0 0.5 1.0



 
Phongthanapanich S. / AIJSTPME (2013) 6(3): 75-81 

 
79 

 
 

(a) O(2) of density 

 
(b) O(2) of pressure 

  
(c) O(2) of x-velocity 

Figure 4: Comparison of exact and numerical 
solutions of problem 4.2. 

 

 
(a) O(2) of density 

 
(b) O(2) of pressure 

  
(c) O(2) of x-velocity 

Figure 5: Comparison of exact and numerical 
solutions of problem 4.3. 
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4.3 Symmetric rarefaction wave 

The initial conditions of the symmetric rarefaction 
wave problem ( 5=M ) [16] are given by 

)2.0,1,7(),,( −=Lpuρ  and )2.0,1,7(),,( =Rpuρ , 
such that they produce vacuum at the center of 
domain. Reference [9] shows that some numerical 
schemes cannot preserve the contact discontinuity. 
Figures 5(a)-(c) shows that the higher-order solutions 
of density, pressure, and x-velocity, respectively are 
preserve the contact discontinuity. The scheme 
produces a good approximation to the exact solution, 
and they noticeably small quantity of over-estimate 
the value of pressure in the middle of the expansion 
fan (at 5.0=x ). 

 
5 Conclusions 

The present study demonstrates some important 
numerical challenges affecting the accuracy of shock 
tube problem on two-dimensional triangular grids. 
From a numerical point of view, the shock tube 
problem is a very interesting test case because the 
exact time-dependent solution is analytically known 
and can be compared with the computed solution by 
applying numerical approximations. A mixed entropy 
and shock fixes method is proposed to improve 
numerical stability of the Roe flux-difference 
splitting scheme (RoeVLPA). The method combines 
the modified fixes by Van Leer et al. and, Pandolfi 
and D'Ambrosio, together. The method was then 
evaluated by several well-known shock tube test 
cases and found to eliminate unphysical solutions 
that may arise from the use of the original Roe 
scheme. To further improve solution accuracy, the 
high-order spatial and second-order Runge-Kutta 
temporal discretization were also implemented.  
Computations were carried out based on the finite 
volume approach and instead of experimentation and 
the robustness of the numerical model and the 
accuracy of the simulations will be assessed through 
validation with the analytical ideal shock tube theory. 
The entire process was found to provide more 
accurate solutions for transient flow test cases. 
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