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Abstract
Due to the uncertainty of possible reduced models prior to data collection, this paper considered using experimental  
designs that are robust across the set of potential models. In this study, blocking effects were combined into all 
possible models which were obtained from weak heredity principle (WH). The objective of this article was to 
propose the geometric mean of G-optimalities as a new alternative for finding robust response surface designs 
against model misspecification. The proposed criterion is so-called a weighted G-optimality criterion (Gw). 
The genetic algorithm (GA) was employed to optimize the weighted G-optimality criterion for finding designs. 
Robust designs having 2 and 3 design variables in hypercube were generated with an appropriate number of 
design points in each blocks and the number of blocks in this study are 2, 3, and 4. The scheme for weighting 
the criteria was to give more weight to a model with a larger number of parameters. The resulting weighted 
G-optimal designs have higher G-efficiencies compared to those of G-optimal designs if a true model is the 
first-order or interaction models. The G-efficiency of a weighted G-optimal design is slightly less than that of 
a G-optimal design even when the true model is a second-order model. Furthermore, design points identified 
from the GA are also presented, which would be very useful in practice for those intending to implement an 
experimental design for data collection.

Keywords: Experimental designs, Response surface designs, Weighted G-optimality, Weak heredity, Genetic 
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1 Introduction

Response surface designs are one class of experimental 
designs that are important for developing, improving 
and optimizing the performance of an industrial process.  
It is generally affiliated with the approximation of 
unknown complicated function by using a lower-order 
polynomial model, usually first-order, interaction, or 
second-order model. In situations in which data for 
every combination of factor levels cannot be collected 

under identical conditions, blocks should be formed 
to reduce variability. A small exact response surface 
design is commonly constructed by assuming a second-
order model. The model for k design variables and b   
blocks can be expressed as Equation (1):

 (1)

where x1, x2,..., xk are the k design variables, y is 
an observed response, the β’s are the parameter  
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coefficients to be estimated, δ1 is the lth block effect 
and ε is a normally distributed error term having an 
expectation of zero and variance σ2. 
 There are many designs choices for a considered 
model. Selecting a good design is very important, 
and there are many design criteria that could be used 
for selection. Design optimality criteria are generally  
concerned with the optimal properties of the XTX 
matrix, where X is the model matrix [1]. 
 In this paper, we focus on the G-optimality criterion,  
which centers on minimizing the prediction variance. 
G-optimality minimizes the maximum of the Scaled 
Prediction Variance (SPV) function. This criterion 
was first proposed by Smith [2]. G comes from the 
word “Global” as the SPV is calculated with all points 
in design space χ, not just design points. Let ξ* be a  
G -optimal design, such that [Equation (2)]

 (2)

where Ξ is the set of all possible exact designs on 
design space χ, 

, 
and N is the design size. The common efficiency 
measure for any proposed design and corresponding 
model based on G-optimality is called the G-efficiency 
[Equation (3)]:

G-efficiency = , (3)

where p is the number of model parameters. For more 
details on optimal design, see Atkinson et al. [3].
 Chipman [4] suggested two classes of reduced 
models including the weak heredity (WH) and strong 
heredity (SH) principles. A model can be inferred with 
vector Δ containing ‘1’ and ‘0’, where ‘1’ represents 
the corresponding term included in the model and ‘0’ 
represents the term not included in the model. The 
symbols Δi, Δii and Δij represent the indicator function 
values for the ith first-order effect, the iith second-
order effect, and the ijth interaction effect, respectively. 
Weak heredity (WH) requires that either the βi xi or βj xj  
term (or both) is contained in the model if the βij xi xj 

term is included in the model, and requires the βi xi 
term must be in the model if the  term is included 
in the model. For k = 2, Δ = (Δ0, Δ1, Δ2, Δ11, Δ22, Δ12) 
represents the corresponding Δ vectors for 6 parameters 
in the second-order model (without blocks). There are 
17 WH reduced models. For k = 3, the second-order 
model consisting of 10 parameters (without blocks) 
will give 185 WH reduced models. 
 Chomtee and Borkowski [5] considered the 
design with 3 variables in a spherical design region 
over sets of reduced models based on weak and strong 
heredity and presented weighted D-, A-, G-, and IV-
optimality criteria using prior probability assignments 
to model effects. Chairojwattana, Borkowski, and 
Chaimongkol [6] developed a genetic algorithm for 
generating designs that optimize the weighted D- and 
G-optimality criteria for second-order response surface 
designs; the weighted average of the efficiency values 
across all models are based on the arithmetic mean 
while the weights are determined by prior probability  
assignments to model effects. Limmun et al. [7] generated  
weighted A-optimality criterion and Limmun et al. [8] 
generated weighted IV-optimal for mixture designs  
using arithmetic mean as a criterion. In literature, there 
is no paper using the geometric mean as a criterion.
 In this research, the weighted G-criterion (Gw) 
based on the geometric mean is used to construct  
designs. The objective of weighted G-optimality (Gw) 
is to maximize the weighted average of G-efficiencies 
in the design region over a set of reduced models. 
Thus, a weighted G-optimal is considered a robust 
design against a set of multiple possible models. The 
scope in this study involves the construction of optimal  
response surface designs over the sets of reduced 
models based on the weak heredity principles of a 
second-order model with 2, 3, and 4 blocks for 2 and 
3 design variables. The number of design points starts 
from 8 to 18. The resulting robust designs obtained 
from weighting all reduced models will be compared 
with the optimal designs.

2 Using Weighted G-optimality to Construct  
Robust Designs

Let M be the number of reduced models where the 
initial or “full” model is the second-order model with 
blocks given in Equation (1). We define a set of model 
weights such {w1, w2,..., wM} that  wi =1. The weights 
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are applied for calculating the weighted G-optimality  

criterion (Gw). For model i, a weight wi =    

is assigned, such that p(i) equals the number of  
non-block parameters in model i, m(p(i)) is the  
number of models having p(i) non-block parameters, and  

D =  p with t = . The following method is used  

for k = 2 and 3 variables. For example, the second-
order model without blocks has 6 parameters for k = 2,  
 
therefore, D =  p = 21. That is, models having  

more parameters will obtain more weight. Here, the 
geometric mean is newly proposed for calculating the  
Gw -optimality criterion. 
 Let Ξ be the set of all possible exact designs on 
design space χ, the Gw -optimality criterion seeks a 
design ξ* satisfying [Equation (4)]

 (4)

where  is a moment matrix for model   
i and N is the design size,  is an expanded vector 
corresponding to the terms in the model. Thus, the 
corresponding G-efficiency is defined as [Equation (5)]

, (5)

where ,

Gi is called the G-efficiency of the ith reduced model. 
The use of geometric mean is considered because the 
design should be robust to model reduction and should 
be able to fit all parameters for reduced models. While  
the weighted optimality criterion based on the arithmetic  
mean does not guarantee that all reduced models can 
be fitted. This is inconsistent with the goal of finding 
a model-robust design.

3 Genetic Algorithms

Genetic algorithms (GAs), computer-based strategies 

for searching and developing solutions to problems 
were first described by Holland [9]. The GA is taken 
from biological population genetics and the tenet 
of natural selection. This algorithm is based on the 
survival of the fittest biological essential; individuals 
modulate themselves to their environment and then 
evolve themselves into more desirable individuals. 
GAs have been applied to the generation of optimal 
response surface designs [10].
 Borkowski [11] developed a GA to generate  
near-optimal D, A, G, and IV small exact N-point 
designs for second-order models in the hypercube. 
Thongsook et al. [12] presented a GA to generate–
optimal designs for conditioned mixture regions 
when quadratic terms are of primary interest.  
Limmun et al. [7] developed a GA to generate 
weighted A-optimality criterion for mixture designs,  
while Limmun et al. [8] used GA to generate 
weighted IV-optimal mixture designs. It was found 
that the GA-generated designs are robust across a 
set of potential mixture models. Mahachaichanakul 
and Srisuradetchai [13] used the GA to construct D- 
and G-optimal robust designs against missing data. 
It is viewed that the GA is particularly attractive  
because it is relatively easy to achieve the objective 
function and can find good solutions in a reasonable  
amount of time. Unlike other optimization algorithms,  
the GA can be used for any objective function and 
is extremely flexible, making GAs highly useful in  
practice.
 The GA will generate an exact N - point k -  
variable response surface design with a variety of 
blocking structures. A chromosome is an N × k matrix 
displaying the N design points in k factors. The goal 
is to find an N × k matrix that optimizes a design 
optimality criterion. A gene is defined as a row of 
chromosomes (design), and a genetic variable can 
be any design variable in a gene (or row). Let xij  
be the jth genetic design variable in row ith of a  
chromosome. The k-dimensional hypercube design  
region [–1,1]k  directs a gene’s possible values 
with each xij ∈ [–1,1]. An objective F function is a  
measurement function to measure a chromosome’s  
fitness, which is a solution and the function we wish to 
optimize. F uses a chromosome as an input to produce 
the objective function value as the output, where larger 
objective function values are interpreted as having 
greater fitness. 
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3.1  Initiation process 

The initiation of every generation will have a population  
that contains a fixed number M of chromosomes where 
M is odd.

3.2  Selection process

The best chromosome is selected after generating 
the initial population of M chromosomes. The best  
chromosome (elite chromosome) is the chromosome 
with the greatest objective function FG(X) value. This 
affects the next generation of chromosomes. To create  
the next generation of offspring chromosomes, randomly  
select (M – 1)/2 pairs from the remaining M – 1 non-
elite chromosomes (parent chromosomes) before the 
reproduction process.

3.3  Reproduction process

Reproduction brings about the evolution in some  
characteristics of the chromosome to originate the next  
generation of chromosomes. After the reproduction  
process is done, we will obtain M–1 offspring chromosomes,  
which are related to the M–1 parent chromosomes. 
If the best offspring chromosomes have a higher 
objective function value than the value of the elite  
chromosome, the offspring chromosome with the highest  
objective function value will become a new elite 
chromosome. Therefore, the elite chromosome and the 
M–1 offspring become the future parents and survive 
to create the next generation of M chromosomes. The 
reproduction process can be changed according to 
the researcher and the nature of interesting solutions. 
However, it comprises the same idea as biological 
population genetics. For each operator, a probability 
test is performed on each row of A and B. Let Aa be the 
ath row of A and Bb be the bth row of B. A reproduction 
operator will be applied if a probability test is passed 
(PTIP). That is, for any reproduction operator (say g)  
and for a specified αg, a PTIP if 0 ≤ u ≤ αg where  
u ~ Uniform(0,1). 

3.3.1 The swap rows (sr) gene operator

If a PTIP for row Aa of A occurs, the operator will 
exchange Aa with a random row Bb of B. The set of 
αsr values is 0.002 ≤ αsr ≤ 0.02.

3.3.2 The swap cut point (scp) gene operator

If a PTIP for row Aa of A occurs, the operator 
will exchange the last two decimal digits of the 
k genetic design variables of Aa with the last 2 
decimal digits of the k genetic design variables 
for a random row Bb of B. The set of αscp values is  
0.005 ≤ αscp ≤ 0.02.

3.3.3 The swap block (sb) gene operator

If a PTIP occurs for row j in block b (in either A or B),  
the operator will exchange row j in block b with a  
random row from another block. The remaining operators  
are applied to the genetic variables in the rows of either 
A or B. The set of αsb values is 0.002 ≤ αsb ≤ 0.02.

3.3.4 The swap coordinates (sc) gene operator

If a PTIP occurs for xij of A, the operator will exchange 
a xij of A with a random xkl of B. The set of αsc values 
is 0.002 ≤ αsc ≤ 0.02.

3.3.5 The zero (z) gene operator

If a PTIP occurs for Aij, then xij is changed to 0. The 
set of αz values is 0.01 ≤ αz ≤ 0.05.

3.3.6 The extreme (e) gene operator

If a PTIP occurs for xij, the xij is randomly set to either 
1 or –1. The set of αe values is 0.01 ≤ αe ≤ 0.10.

3.3.7 The creep (c) operator

If a PTIP occurs for xij, then a random variate from  
N(0, σ2) is added to xij to create a new . The variance 
σ2 is set by the researchers. The idea is to slowly change 
the value in each generation. If the creep operator takes  

 > 1 or  < –1, it will be set to 1 or –1, respectively. 
The set of αc values is 0.025 ≤ αc ≤ 0.10.

3.4  Convergence checking

If the objective function for the best chromosome 
in the new generation is not improved across many 
generations, then the GA will stop because no further 
improvement can be found.
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4 Results and Discussion 

For designs generated by GA, designs having k = 2 
variables and b = 2 blocks are shown in Tables 1 and 2.  
The “AM” stands for the term “all models”, which 
means the robust design that optimizes weighted  
G-optimality of all models. The resulting design points 
are in the last column. The “FM” stands for the term 
“full model only”, which means the optimal design 
for only the second-order model, as in Equation (1).  
 The Gw -efficiencies referring to the weighted 
G-optimality efficiencies will be calculated for the 
resulting (robust) designs and the optimal designs 
(for the second-order model). Also, the G-optimality 
efficiencies are calculated for both robust and optimal  
designs. The Gw -efficiencies of the AM designs must be  
greater than those of the FM designs because the AM 
designs optimize the Gw giving weights for all reduced 
models. For example, for N = 8 and the block sizes are 4 
and 4, the corresponding Gw - and G-efficiencies of the 
AM design are equal to 75.03 and 80.40, respectively.  
The design points in the 1st block  are denoted by  
superscript 1, i.e. (0.35, –1)1, (–1,1)1, (–0.78, 0.17)1, 
and (1,1)1, while design points in the 2nd block are 
given as superscript 2, i.e. (1,–1)2, (–0.35,1)2, (–1,–1)2,  

and (0.78,0.15)2. The corresponding Gw - and  
G-efficiencies of the FM design are equal to 74.95 and 
80.41, respectively. Considering the Gw -efficiencies, 
it is the AM design giving a higher Gw - efficiencies 
than the FM design. In the same manner, the FM design 
will give a higher value if we consider G -efficiencies. 
Given a certain criterion, however, robust designs (AM 
designs) do not differ from the optimal designs (FM 
designs) in terms of Gw - and G-efficiencies. 
 An increase in the design efficiency depends on 
two factors: the total number of design points, N, and 
the number of design points in each block, ni. When 
N increases, the design efficiency tends to increase. 
 If ni ’s for all blocks are about the same, its design 
efficiency will be greater than that of a design with 
different block sizes. For example, in Table 1, the Gw 
-efficiency of the AM design for N = 8 (both block 
sizes are 4) equals 75.03 which is greater than that 
of the AM design for N = 9 (block sizes are 4 and 5, 
respectively), which equals 73.31. 
 Table 2 shows a comparison of G-efficiency 
for each design under the first-order model (FOM), 
interaction model (INT), and second-order model 
(SOM). For example, for N = 8, when sample size in 
the 1st, and 2nd block are both 4, the G-efficiencies of 

Table 1: Summary of Gw - and G-efficiencies for “all models” and “full model only” having k = 2 variables 
and b = 2 blocks 

N ni Design Gw G Design Points

8 4 
4

AM 75.03 80.40 (0.35,–1)1,(–1,1)1,(–0.78,–0.17)1,(1,1)1,
(1,–1)2,(–0.35,1)2,(–1,–1)2,(0.78,0.15)2

FM 74.95 80.41 (0.35,–1)1,(–1,1)1,(–0.78,–0.2)1,(1,1)1,
(1,–1)2,(–0.35,1)2,(–1,–1)2, (0.78,0.15)2

9 4 
5

AM 73.31 78.91 (0.7,–0.26)1,(1,0.9)1,(–1,1)1,(–0.33,–1)1,
(–1,–0.08)2,(1,–1)2,(0.57,1)2,(–1,–1)2,(–0.11,0.8)2

FM 73.14 79.03 (0.7,–0.26)1,(1,0.9)1,(–1,1)1,(–0.33,–1)1,
(–1,–0.11)2,(1,–1)2,(0.55,1)2,(–1,–1)2,(–0.11,0.8)2

10 5 
5

AM 80.00 84.67 (–1,–0.79)1,(0.48,1)1,(1,0)1,(–1,1)1,(0.44,–1)1,
(–0.86,0.8)2,(1,–1)2,(0.99,1)2,(–0.87,-1)2,(–0.21,0)2

FM 79.87 85.17 (–1,–0.79)1,(0.44,1)1,(1,0)1,(–1,1)1,(0.4,–1)1,
(–0.86,0.8)2,(1,–1)2,(1,1)2,(–0.89,–1)2,(–0.21,0)2

11 5 
6

AM 77.67 81.86 (1,–0.7)1,(–0.5,1)1,(–0.35,–1)1,(–1,–0.1)1,(1,0.9)1,
(0.26,0.1)2,(1,1)2,(1,–1)2,(–1,–1)2,(0.3,0)2,(–1,1)2

FM 77.66 81.96 (1,–0.7)1,(–0.5,1)1,(–0.35,–1)1,(–1,0.11)1,(1,0.88)1,
(0.26,0.1)2,(1,1)2,(1,–1)2,(–1,–1)2,(0.3,0)2,(–1,1)2

12 6
6

AM 80.66 85.77 (0.7,–1)1,(1,0.1)1,(–1,0.1)1,(–0.7,–1)1,(–0.7,1)1, (0.7,1)1,
(1,–1)2,(0,0.5)2,(0,–0.2)2,(–1,1)2,(–1,–1)2,(1,1)2

FM 80.43 85.86 (0.7,–1)1,(1,0.12)1,(–1,0.09)1,(–0.69,–1)1,(–0.7,1)1, (0.7,1)1,
(1,–1)2,(0,0.5)2,(0,–0.1)2,(–1,1)2,(–1,–1)2,(1,1)2
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the AM and FM designs for first-order model (FOM) 
equal 70.12 and 69.98, respectively. For the interaction  
model (INT), they are 66.65 and 66.38, respectively. 
It is concluded that the “usual” G-efficiencies will 
be greater than those of the FM designs if the robust 
(AM) designs are used for first-order model and 
interaction model. That is, the AM designs are more 
robust to model-misspecification than the FM design 
for all choices of N. Also, the G-efficiencies of the FM 
designs for the SOM must be greater than those of the 
AM designs for all choices of N because the goal of 
the FM designs is to optimize for the full second-order 
model (SOM) with blocks. However, the G-efficiencies  
of both AM and FM designs are very close. The same 
patterns are true for all choices of k and b.

 The results in Tables 3 and 4 are for designs  
having k = 2 variables and b = 3 blocks. For example, 
for N = 9 in Table 3, when the sample sizes in 1st, 2nd, 
and 3rd block are 3, 3, and 3 , respectively, Gw - and  
G- efficiencies of the AM design equals 70.64 and 
73.55, respectively, while the FM design has values 
70.54 and 73.58, respectively. If comparing Tables 1  
and 3, it can be concluded that both Gw - and G-
efficiencies reduce for all choices of N as the number 
of blocks (b) increases from 2 to 3 blocks. In Table 4, 
if we use the AM designs for first-order model and  
interaction model, the G-efficiencies are greater than 
those of the FM designs for all choices of N similar to the 
case b = 2. We have shown that the AM designs can be  
very effective in obtaining designs that have higher  

Table 2: Summary of G-efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 2 variables and b = 2 blocks 

k b N
FOM INT SOM

AM FM AM FM AM FM

2 2

8 70.12 69.98 66.65 66.38 80.40 80.41
9 70.21 70.09 63.92 63.91 78.91 79.03
10 80.19 79.15 72.41 71.69 84.67 85.17
11 75.85 75.55 67.07 66.87 81.86 81.96
12 78.37 77.32 69.31 68.55 85.77 85.86

Table 3: Summary of Gw and G-efficiencies for all models and full model only having k = 2 variables and  
b = 3 blocks 

N ni Design Gw G Design Points

9
3
3
3

AM 70.64 73.55 (1,–0.3)1,(–1,–1)1,(–0.16,1)1,(–0.7,0)2,(1,–1)2,(1,1)2,(–1,1)3,(1,0.3)3,(–0.16,–1)3

FM 70.54 73.58 (1,–0.28)1,(–1,–1)1,(–0.16,1)1,(–0.7,0)2,(1,–1)2,(1,1)2, 
(–1,1)3,(1,0.3)3,(–0.16,–1)3

10
3
3
4

AM 75.47 78.31 (1,–1)1,(–1,–0.41)1,(0.3,1)1, (1,1)2,(0.3,–1)2,(–1,0.41)2, 
(–1,–1)3,(–0.01,0)3,(1,0)3,(–1,1)3

FM 74.79 79.38  (1,1)1,(0.43,–1)1,(–1,0.34)1,(–1,–0.48)2,(1,–1)2,(0.28,1)2, 
(1,0.11)3,(–1,–1)3,(–1,1)3,(0.1,–0.2)3

11
3
4
4

AM 72.81 75.79 (1,0.82)1,(–1,0.55)1,(0.06,–1)1,(0.03,0.9)2,(–1,–0.43)2,(1,1)2,(1,–1)2, 
(–1,–1)3,(–1,1)3,(1,–0.52)3,(0.14,0.2)3

FM 71.35 77.37 (1,–1)1,(0.42,1)1,(–1,–0.41)1,(1,1)2,(0.3,–1)2,(–1,0.81)2,(–0.2,–0.4)2,
(0.4,0.2)3,(1,–0.31)3,(–0.8,1)3,(–1,–1)3

12
4
4
4

AM 76.34 80.40 (1,1)1,(1,–1)1,(–0.2,0)1,(–0.92,0)1,(–1,1)2,(–0.89,–1)2,(1,–0.41)2,
(0.3,1)2,(0.3,–1)3,(–1,–1)3,(–0.89,1)3,(1,0.41)3

FM 76.13 80.41 (1,1)1,(1,–1)1,(–0.2,0)1,(–0.94,0)1,(–1,1)2,(–0.89,–1)2,(1,–0.44)2,
(0.29,1)2,(0.22,–1)3,(–1,–1)3,(–0.91,1)3,(1,0.41)3

13
4
4
5

AM 77.46 83.34 (1,1)1,(–1,1)1,(–0.17,–1)1,(1,–0.15)1,(0.22,1)2,(–1,–1)2,(–1,0.18)2, 
(1,–1)2, (0.05,0.25)3,(1,–1)3,(1,1)3,(–1,1)3,(–1,–1)3

FM 76.97 83.80 (1,1)1,(–1,0.98)1,(–0.12,–1)1,(1,–0.13)1,(0.21,1)2,(–1,–1)2,(–1,0.05)2, 
(1,–1)2,(0.05,0.25)3,(1,–1)3,(1,1)3,(–1,0.95)3,(–1,–1)3
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G-efficiencies than the FM designs when the true 
model is the first-order model or interaction model. 
 The results in Tables 5 and 6 are for designs  
having k = 2 variables and b = 4 blocks. It shows that 
Gw - and G-efficiencies for b = 4 decrease as the number  
of blocks increases (see Gw - and G- efficiencies in 
Tables 1 and 3, respectively) for all choices of N. 
Similar to the case b = 2 and 3, if the first-order model 
or interaction model is true, the G-efficiencies of AM 
designs are greater than those of the FM designs for 
all choices of N. This means the proposed weighted 
G-optimal designs in this study are still robust to 
model misspecification, even if the number of blocks 

increases.
 The designs having k = 3 variables and b = 2, 3, 
or 4 blocks are presented in Tables 7 to 12. The results 
have the same pattern as designs with k = 2 variables. 
Also, the Gw - or G-efficiencies for k = 3 are lower 
than those for all cases having the same block size and 
k = 2. Note that in a case of k = 3, b = 3, and N = 13  
in Table 9, the Gw -efficiencies of the AM and FM 
designs are equal to 66.39, although the design points 
are different. In Table 10, however, if the true model 
is the first-order or interaction model, the weighted  
G-optimal design (AM design) has a higher G-efficiency  
than that of the FM model.

Table 4: Summary of G -efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 2 variables and b = 3 blocks 

k b N
FOM INT SOM

AM FM AM FM AM FM

2 3

9 66.03 65.88 61.36 61.29 73.55 73.58
10 69.72 69.25 65.63 63.77 78.31 79.38
11 69.98 65.59 64.48 60.84 75.79 77.37
12 73.06 72.27 66.18 65.98 80.40 80.41
13 68.86 68.31 67.53 66.51 83.34 83.80

Table 5: Summary of Gw and G-efficiencies for all models and full model only having k = 2 variables and  
b = 4 blocks 

N ni Design Gw G Design Points

10

2
2
3
3

AM 55.18 56.25 (1,0.17)1,(–0.66,–1)1, (0.68,1)2,(1,–0.22)2, 
(–1,1)3,(–1,–1)3,(0.2,0)3,(–1,–0.02)4,(0.91,1)4,(0.9,–1)4

FM 54.86 56.27 (–1,0.13)1,(0.7,–1)1, (–1,–0.14)2,(0.65,1)2, 
(1,–1)3,(1,1)3,(–0.18,0)3,(1,–0.02)4,(–0.91,–1)4,(–0.92,1)4

11

2
3
3
3

AM 59.81 62.60 (–0.28,1)1,(1,–0.2)1, (–1,–1)2,(–1,1)2,(0.48,0.2)2, 
(0.03,–1)3,(1,1)3,(–1,0.19)3, (0.37,0.7)4,(–1,–1)4,(1,–1)4

FM 59.80 62.60 (–0.28,1)1,(1,–0.2)1, (–1,–1)2,(–1,1)2,(0.48,0.2)2, 
(0.03,–1)3,(1,1)3,(–1,0.2)3,(0.37,0.7)4,(–1,–1)4,(1,–1)4

12

3
3
3
3

AM 73.78 75.99 (–0.97,–1)1,(1,–0.18)1,(–0.64,1)1,(1,–1)2,(–1,–0.88)2,(–0.03,0.7)2, 
(1,0.88)3,(–1,1)3,(0.02,–0.7)3,(–0.99,0.2)4,(0.98,1)4,(0.65,–1)4

FM 73.62 76.44 (–0.96,–1)1,(1,–0.18)1,(–0.64,1)1,(1,–1)2,(–1,–0.85)2,(–0.03,0.7)2,  
(1,0.83)3,(–1,1)3, (0.02,–0.7)3,(–0.99,0.2)4,(0.98,1)4,(0.65,–1)4

13

3
3
3
4

AM 74.47 77.85 (0.96,0.1)1,(–0.8,–1)1,(–0.78,1)1,(1,1)2,(–1,0.21)2,(0.3,–1)2, 
(–0.83,–0.16)3,(0.7,1)3,(0.98,–1)3,(–1,–1)4,(0.19,0.4)4,(1,–0.7)4,(–1,1)4

FM 74.44 77.88 (0.96,0.1)1,(–0.79,–1)1,(–0.79,1)1,(1,1)2,(–1,0.2)2,(0.3,–1)2, 
(–0.83,–0.16)3,(0.7,1)3,(0.98,–1)3,(–1,–1)4,(0.17,0.4)4,(1,–0.69)4, (–1,1)4

14

3
3
4
4

AM 75.57 80.02 (–1,1)1,(–0.28,–1)1,(1,0.31)1,(–1,–1)2,(–0.25,1)2,(1,–0.31)2, 
(–1,0.9)3,(–0.23,–0.31)3,(0.95,–1)3,(1,1)3, (0.82,1)4,(–0.71,0.2)4,(–1,–1)4,(0.99,–1)4

FM 75.48 80.09
(–1,1)1,(–0.28,–1)1,(1,0.3)1,(–1,–1)2,(–0.25,1)2,(1,–0.34)2, 
(–1,0.9)3,(–0.23,–0.31)3, (0.96,–1)3,(1,1)3, 
(0.82,1)4,(–0.71,0.2)4,(–1,–1)4,(0.97,–1)4
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Table 6: Summary of G-efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 2 variables and b = 4 blocks 

k b N
FOM INT SOM

AM FM AM FM AM FM

2 4

10 55.10 54.10 46.93 46.90 56.25 56.27
11 52.86 52.82 51.74 51.72 62.60 62.60
12 70.24 69.93 65.93 65.10 75.99 76.44
13 72.05 72.02 68.08 67.95 77.85 77.88
14 74.25 73.81 69.45 69.13 80.02 80.09

Table 8: Summary of G-efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 3 variables and b = 3 blocks  

k b N
FOM INT SOM

AM FM AM FM AM FM

3 2

12 73.36 71.88 61.84 61.61 75.14 76.08
13 69.67 69.24 62.33 62.04 80.44 80.65
14 65.65 64.75 61.50 61.49 81.38 81.66
15 75.90 72.73 60.92 60.32 76.82 78.41
16 77.24 76.66 63.91 63.88 81.65 81.78

Table 7: Summary of Gw and G-efficiencies for all models and full model only having k = 3 variables and  
b = 2 blocks  

N ni Design Gw G Design Points

12 6
6

AM 70.27 75.14
(–0.17,–1,–0.05)1,(–0.31,0.07,1)1,(–1,–0.82,–1)1,(–1,1,0.71)1, 
(1,0.95,–1)1,(1,–0.97,1)1,(0.8,1,1)2,(1,0.34,–0.08)2,(–0.44,1,–1)2, 
(–1,0.36,–0.76)2,(0.92,–0.97,–1)2,(–1,–1,1)2

FM 69.13 76.08
(–0.17,–1,0)1,(–0.3,0.16,1)1,(–1,–0.83,–1)1,(–1,1,0.71)1,(1,0.96,–1)1, 
(1,0.91,1)1,(0.8,1,1)2,(1,0.45,–0.27)2,(–0.51,1,–1)2,(–1,0.52,–0.84)2, 
(0.93,–0.95,–1)2,(–1,–1,1)2

13 6
7

AM 71.23 80.44
(1,0.06,0.15)1,(–1,1,–0.15)1,(–0.88,–1,1)1, (0.98,1,1)1,(–0.14,0.48,–1)1,
(1,–1,–1)1,(0.01,–1,0.03)2,(1,1,–0.9)2,(1,–1,1)2,(–1,–1,–1)2,
(–1,0.18,0.94)2,(–0.47,1,1)2,(–0.96,0.83,–1)2

FM 71.15 80.65
(1,0.06,0.16)1,(–1,1,–0.15)1,(–0.88,–1,1)1, (0.97,1,1)1,(–0.13,0.49,–1)1,
(1,–1,–1)1, (0.03,–1,0.05)2,(1,1,–0.9)2,(1,–1,1)2,(–1,–0.99,–1)2,
(–1,0.2,0.96)2,(–0.47,1,1)2,(–0.94,0.84,–1)2

14 7
7

AM 75.15 81.38
(0.86,1,1)1,(–0.17,0.09,–1)1, (1,0.3,0.26)1,(–1,1,–1)1,(–1,–1,1)1,
(1,–1,–1)1,(0.15,–1,–0.11)1,(1,0.87,–1,1)2,(–1,–1,–1)2,(0.11,–0.17,1)2,
(–1,0.13,0.12)2,(0.28,1,–0.23)2,(–1,1,1)2,(1,–1,1)2

FM 73.38 81.66
(1,1,1)1,(–0.5,0,–1)1,(1,–0.2,–0.1)1,(–1,1,–1)1,(–1,–0.9,1)1,(1,–1,–1)1,
(–0.3,–1,0.4)1,(1,1,–1)2,(–0.9,–1,–1)2,(0.1,–0.3,1)2,(–1,–0.3,–0.1)2,
(–0.1,1,0.4)2,(–1,1,1)2,(1,–1,1)2

15 7
8

AM 73.80 76.82
(0.61,0.07,–1)1,(1,1,1)1,(–0.85,–1,1)1,(0.06,–1,–0.89)1,(–1,1,–1)1,
(1,–0.39,0.16)1,(–1,0.32,0.55)1,(1,1,–1)2,(0.04,–0.21,1)2,(–1,–0.5,–1)2,
(1,–1,1)2,(–1,1,1)2,(1,–1,–0.88)2, (0.1,1,–0.03)2,(–1,–1,–0.21)2

FM 72.28 78.41
(0.35,–0.11,–1)1,(1,1,1)1,(–0.85,–1,1)1,(0,–1,–1)1,(–1,1,–1)1,
(1,–0.24,0.15)1,(–1,0.2,0.4)1,(1,1,–1)2,(0.03,–0.1,1)2,(–1,–0.6,–1)2,
(1,–1,1)2,(–1,1,1)2,(1,–1,–0.9)2,(0.03,1,–0.15)2,(–1,–1,–0.1)2

16 8
8

AM 78.05 81.65

(1,0.35,–0.35)1,(–0.98,–1,1)1,(0,–1,–0.06)1,(1,–1,–1)1,(–1,0.43,–0.47)1,
(–0.94,1,–1)1,(1,1,1)1,(–0.03,0.12,1)1,(0.98,1,–1)2,(–1,1,1)2,
(–1,–0.35,0.35)2,(1,–0.43,0.47)2,(0.03,–0.12,–1)2,(0,1,0.06)2,
(0.94,–1,1)2,(–1,–1,–1)2

FM 75.94 81.78

(1,0.31,–0.34)1,(–0.99,–1,1)1,(–0.2,–1,–0.23)1,(1,–1,–1)1,
(–1,0.45,–0.46)1,(–0.95,1,–1)1,(1,1,1)1,(0.03,0.18,1)1,(0.99,1,–1)2,
(–1,1,1)2,(–1,–0.32,0.3)2,(1,–0.39,0.44)2,(–0.05,–0.27,–1)2,
(0.25,1,0.3)2,(0.96,–1,1)2,(–1,–1,–1)2
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Table 10: Summary of G-efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 3 variables and b = 3 blocks  

k b N
FOM INT SOM

AM FM AM FM AM FM

3 3

13 65.02 64.88 58.72 58.52 72.49 72.58

14 66.97 63.07 61.45 58.81 71.35 73.75

15 75.23 74.28 62.71 61.05 77.99 78.12

16 74.91 71.52 60.62 60.13 73.42 76.07

17 74.33 73.79 61.28 60.57 76.25 76.30

Table 9: Summary of Gw and G-efficiencies for all models and full model only having k = 3 variables and  
b = 3 blocks  

N ni Design Gw G Design Points

13
4
4
5

AM 66.39 72.49
(1,1,0.31)1,(1,–1,1)1,(–1,0.54,0.7)1,(–0.06,–0.27,–1)1,
(1,–0.34,0.28,1)2,(–0.46,0.98,1)2,(0.81,1,–1)2,(–1,–1,–1)2,
(–1,1,–0.84)3,(1,0.51,1)3,(0.01,–0.99,0.1)3,(1,–1,–1)3,(–1,–1,1)3

FM 66.39 72.58
(1,1,0.31)1,(1,–1,1)1,(–1,0.54,0.69)1,(–0.07,–0.25,–1)1, 
(1,–0.34,0.28)2,(–0.46,0.98,1)2,(0.81,1,–1)2,(–1,–1,–1)2, 
(–1,1,–0.83)3,(1,0.51,1)3,(0.01,–0.96,0.1)3,(1,–1,–1)3,(–1,–1,1)3

14
4
5
5

AM 68.50 71.35
(1,0.07,0.35)1,(–1,0.97,1)1,(–0.44,1,–1)1,(–0.27,–1,–0.16)1, 
(0.97,–0.97,–1)2, (1,1,1)2,(–0.23,0.99,0.1)2,(–1,0.27,–1)2,(–1,–1,1)2, 
(1,–1,1)3,(–1,–1,–1)3,(–1,1,0.09)3,(–0.2,0.25,1)3,(1,0.91,–1)3

FM 67.33 73.75
(1,0.09,0.37)1,(–1,1,1)1,(–0.45,1,–1)1,(–0.32,–1,0.12)1, 
(0.98,–0.96,–1)2,(1,1,1)2,(–0.23,0.99,0.1)2,(–1,0.32,1)2,(–1,–1,1)2, 
(1,–1,1)3,(–1,–1,–1)3,(–1,0.88,0.11)3,(–0.22,0.21,1)3,(1,0.92,–1)3

15
5
5
5

AM 71.06 77.99
(–0.98,–1,–1)1,(1,0.45,–0.63)1,(–1,1,–0.04)1,(1,–1,1)1,(–0.29,0.19,1)1, 
(0.97,–1,–1)2,(–0.32,1,–1)2,(–1,–1,1)2,(–1,0.34,–0.43)2,(1,1,1)2, 
(1,–0.35,0.73)3,(–1,0.35,–1)3,(–1,1,1)3,(–0.12,–1,–0.06)3,(1,1,–1)3

FM 71.04 78.12
(–0.98,–1,–1)1,(1,0.62,–0.67)1,(–1,1,–0.01)1,(1,–1,1)1,(–0.23,0.22,1)1, 
(0.98,–1,–1)2,(–0.31,1,–1)2,(–1,–1,1)2,(–1,0.4,–0.27)2,(1,1,1)2, 
(1,–0.12,0.79)3,(–1,0.41,–1)3,(–1,1,1)3,(–0.21,–1,–0.03)3,(1,1,–1)3

16
5
5
6

AM 71.62 73.42
(1,–1,–1)1,(1,0.74,0.72)1,(–0.37,1,–0.29)1,(–0.6,–1,1)1,(–1,0.01,–1)1, 
(1,1,–1)2,(–1,–1,–1)2,(–1,1,1)2,(1,–1,1)2,(–0.1,–0.1,0)2, 
(0.12,–0.6,–1)3,(–1,–0.42,1)3,(–1,1,–1)3, (1,–0.39,–0.3)3,(–1,–1,0.05)3, (0.75,1,1)3

FM 70.32 76.07
(1,–1,–1)1,(1,0.6,0.4)1,(–0.11,1,–0.11)1,(–0.7,–1,1)1,(–1,–0.1,–1)1, 
(1,1,–1)2,(–1,–1,–0.9)2,(–1,1,1)2,(1,–1,1)2,(–0.1,–0.1,0)2, 
(0.07,–0.6,–1)3,(–1,–0.5,1)3,(–1,1,–1)3, (1,–0.51,–0.51)3,(–1,–1,0), (0.9,1,1)3

17
5
6
6

AM 71.79 76.25

(1,–0.33,1)1,(0.83,1,–1)1,(–1,–0.46,–0.73)1,(0.05,–1,–0.01)1, 
(–0.94,1,1)1,(–0.91,1,–1)2,(–0.16,0.4,0)2,(1,–0.17,–0.32)2,(1,–1,–1)2, 
(0.81,1,1)2,(–1,–1,1)2, (0.35,–0.16,–1)3,(–1,0.85,0.13)3,(1,–1,1)3, 
(1,1,–0.15)3,(–0.44,–0.11,1)3,(–1,–1,–1)3

FM 70.99 76.30

(1,–0.39,1)1,(0.84,1,–1)1,(–1,–0.32,–0.76)1,(–0.05,–1,–0.23)1, 
(–0.91,1,1)1,(–0.9,1,–1)2,(–0.16,0.55,0)2,(1,–0.28,–0.52)2, 
(1,–1,–1)2,(0.85,1,1)2,(–1,–1,1)2,(0.16,–0.17,–1)3,(–1,0.91,0.25)3, 
(1,–1,1)3,(1,1,–0.21)3,(–0.5,–0.26,1)3,(–1,–1,–1)3
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 Based on the results in this paper, it can be confirmed  
that the robust designs optimizing weighted G-optimality  
of all models are considered more robust than the FM 
designs, which are only the optimal design for the 

second-order model. Thus, when a response surface 
experiment is to be run, the AM designs guarantee all 
potential weak heredity models can be fit while little 
is lost in terms of G-efficiency even when the second-

Table 12: Summary of G-efficiencies for First-order model, Interaction model, and Second-order model from 
GA designs having k = 3 variables and b = 4 blocks  

k b N
FOM INT SOM

AM FM AM FM AM FM

3 4 

14 67.76 67.52 52.19 52.09 62.02 62.19
15 67.05 66.98 51.03 50.99 62.83 62.85
16 68.72 68.04 61.26 61.19 71.92 72.31
17 67.15 65.88 61.26 61.16 72.81 73.18
18 71.89 67.78 60.94 58.51 71.80 72.42

Table 11: Summary of Gw and G-efficiencies for all models and full model only having k = 3 variables and  
b = 4 blocks 

N ni Design Gw G Design Points

14 3344

AM 58.31 62.02
(–1,–1,1)1,(0.78,1,0.32)1,(0.25,–0.3,–1)1,(–0.34,–0.2,0.99)2, 
(–0.99,0.85,–0.65)2,(1,–1,–1)2,(1,–0.08,–0.14)3,(–1,1,–1)3,(–0.16,–1,0.04)3, 
(1,1,1)3,(0.9,1,–1)4,(–1,–0.93,–0.89)4,(1,–1,1)4,(–1,0.95,0.94)4

FM 58.28 62.19
(–1,–1,1)1,(0.77,1,0.3)1,(0.27,–0.28,–1)1,(–0.34,–0.2,0.99)2, 
(–0.99,0.85,–0.65)2,(1,–1,–1)2,(1,–0.11,–0.13)3,(–1,1,–1)3,(–0.16,–1,0.03)3, 
(1,1,1)3,(0.9,1,–1)4,(–1,–0.93,–0.89)4,(1,–1,1)4,(–1,0.95,0.94)4

15 3444

AM 60.22 62.83
(–1,1,–0.05)1,(–0.17,–1,1)1,(1,0.07,–0.79)1,(–0.9,0.87,1)2,(0.99,–0.93,0.4)2, 
(–1,–1,–1)2,(0.66,1,–1)2,(–1,0.94,–1)3,(1,–1,–0.56)3,(–0.38,–0.07,0)3,(1,1,1)3, 
(0.49,1,0.1)4,(0.15,–1,–1)4,(–1,–1,1)4,(0.96,–0.29,1)4

FM 60.21 62.85
(–1,1,–0.05)1,(–0.17,–1,1)1,(1,0.07,–0.79)1,(–0.89,0.88,1)2,(0.99,–0.93,0.4)2, 
(–1,–1,–1)2,(0.66,1,–1)2,(–1,0.93,–1)3,(1,–1,–0.56)3,(–0.38,–0.07,0)3,(1,1,1)3, 
(0.49,1,0.1)4,(0.15,–1,–1)4,(–1,–1,1)4,(0.96,–0.29,1)4

16 4444

AM 69.03 71.92

(–1,1,0.31)1,(–0.83,–0.94,–1)1, (1,1,–1)1,(0.53,–0.15,0.95)1,(–0.86,1,1)2, 
(0.7,0.63,0.35)2,(–0.95,0.78,–0.95)2,(1,–1,–1)2,(1,–1,1)3,(–1,–0.85,–0.45)3, 
(–0.23,1,1)3, (0.97,0.22,–0.88)3,(0.5,–1,0.07)4,(–1,0.19,1)4,(–0.29,0.84,–1)4, 
(1,1,1)4

FM 68.88 72.31

(–1.,1,0.31)1,(–0.84,–0.96,–1)1,(1,1,–1)1, (0.53,–0.15,0.95)1,(–0.87,–1,1)2,
(0.7,0.63,0.35)2,(–0.95,0.78,–0.95)2,(1,–1,–1)2,(1,–1,1)3,(–1,–0.86,–0.48)3,
(–0.24,1,1)3,(0.97,0.22,–0.88)3,(0.54,–1,0.09)4,(–1,0.21,1)4,
(–0.27,0.88,–1)4,(1,1,1)4

17 4445

AM 69.59 72.81
(1,0.94,1)1,(–0.1,1,–1)1,(1,–1,–0.89)1,(–1,–0.33,0.32)1,(–1,1,–0.55)2, (–1,–1,1)2,
(0.71,0.24,1)2,(0.64,–0.97,–1)2,(–1,0.14,–1)3,(1,1,–0.07)3,(–1,0.61,1)3,
(0.06,–1,0.84)3,(–1,–1,–1)4,(–0.59,1,1)4,(1,0.68,–1)4,(1,–1,1)4, (0.3,–0.36,0)4

FM 68.34 73.18

(1,0.9,1)1,(–0.05,1,–1)1,(1,–1,–0.95)1,(–1,–0.24,0.33)1,(–1,1,–0.56)2,
(–1,–1,1)2,(0.68, 0.36,1)2,(0.65,–0.98,–1)2,(–1,0.19,–1)3,(1, 1,0.1)3,
(–1,0.56,1)3,(0.06,–1,0.9)3,(–1,–1,–1)4,(–0.59,1,1)4,(1,0.76,–1)4,(1,–1,1)4,
(0.3,–0.36,0)4

18 4455

AM 69.73 71.80

(0.18,1,–1)1,(–1,0.61,1)1,(1,–0.54,0.4)1,(–1,–1,–0.94)1,(–0.51,–1,–0.68)2,
(1,–0.55,1)2,(–1,1,0.21)2,(1,0.37,–1)2,(1,–1,–1)3,(1,1,1)3,(–0.27,0.03,0)3,
(–1,1,–1)3,(–1,–1,1)3,(1,–1,0.48)4,(–0.34,–1,1)4,(–0.4,1,1)4,(1,1,–0.54)4, 
(–0.99,–0.18,–1)4

FM 67.40 72.42

(–0.11,1,–1)1,(–1,0.74,1)1,(1,–0.65,0.11)1, (–1,–1,–0.96)1,(–0.47,–1,–0.73)2,
(1,–0.55,1)2,(–1,1,0.03)2,(1,0.36,–1)2,(1,–1,–1)3,(1,1,1)3,(–0.27,0.03,0)3,
(–1,1,–1)3,(–1,–1,1)3,(1,–1,0.57)4,(–0.31,–1,1)4,(–0.32,1,1)4, (1,1,–0.57)4,
(–0.85,–0.33,–1)4
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order model is the correct model.

5 Conclusions

The results in this paper support the idea that optimal 
designs (for only the second-order model) may be more 
inefficient than previously thought, meaning one might 
doubt them. As we cannot ignore the uncertainty of 
the possible reduced models prior to data collection,  
researchers should consider using experimental designs  
that are more robust across the set of potential models. 
The proposed robust design (Gw -optimal designs) 
could be another suitable option for researchers. 
Even if a true model is a second-order model, it is not 
necessary to use a G-optimal (FM) design because the 
corresponding G-efficiency of the robust (AM) design 
for the second-order model is very close to that of the 
FM design. That is, very little G-efficiency is lost using 
the AM design when the second-order model is true. 
Current research conducted by the authors indicates 
similar results also hold using a weighted D-optimality 
criterion. Future research will be conducted to extend 
the scope to include model-robust four-factor (k = 4) 
response surface designs with blocks.
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