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Abstract
Herein, we present four methods for constructing confidence intervals for the ratio of the coefficients 
of variation of inverse-gamma distributions using the percentile bootstrap, fiducial quantities, and  
Bayesian methods based on the Jeffreys and uniform priors. We compared their performances using coverage  
probabilities and expected lengths via simulation studies. The results show that the confidence intervals 
constructed with the Bayesian method based on the uniform prior and fiducial quantities performed better 
than those constructed with the Bayesian method based on the Jeffreys prior and the percentile bootstrap. 
Rainfall data from Thailand was used to illustrate the efficacies of the proposed methods.
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Fiducial quantities, Bayesian method

Research Article

1 Introduction

Chiang Mai is a province in Thailand where most people  
are farmers. Rainwater is necessary for agriculture; if 
the rainfall amount is too low or nonexistent (drought 
conditions) the soil becomes dehydrated and crops die, 
whereas if the rainfall amount is too high (flooding),  
crops can be damaged. Thus, when studying the 
rainfall dispersion in two areas (districts) of Chiang 
Mai province, each area can have different profiles. 
The coefficient of variation is a statistical measure 
of the relative dispersion of data points around the 
mean of a data series that can be applied to measure 
the dispersion in a rainfall series. The coefficient of 
variation is widely calculated and used in the study of 
dispersion and it is a standardized, unitless measure 
that allows for comparison between disparate groups 
and characteristics. Therefore, many studies have 
investigated about the coefficient of variation in other 
distribution, such as in a statistical inference about 
constructing the confidence intervals for the parameter 
interest. For normal distribution, Mahmoudvand and 

Hassani [1] introduced an approximately unbiased 
estimator for the population coefficient of variation in 
a normal distribution. Vangel [2] approximated pivotal 
quantities for a normal coefficient of variation. Tian 
[3] constructed confidence intervals using generalized 
confidence interval of normal distribution. Verrill and 
Johnson [4] who proposed confidence intervals using  
asymptotic procedure and simulation procedure 
for the ratio of coefficient of variation in a normal  
distribution. Moreover, non-normal distribution 
such as Sangnawakij and Niwitpong [5] constructed  
confidence intervals for the coefficient of variation  
in the two parameter exponential distributions.  
La-ongkaew et al. [6] constructed confidence  
intervals for the difference between the coefficient 
of variation of Weibull distributions. Yosboonruang 
et al. [7] proposed new confidence intervals using  
Bayesian method for a single coefficient of variation for 
a delta-lognormal distribution and used two examples  
of rainfall datasets to verify the effectiveness of 
the proposed. Sangnawakij and Niwitpong [8] who  
proposed confidence intervals for functions of  
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coefficients of variation with bounded parameter 
spaces in two gamma distributions and used the data 
of monthly rainfall to illustrate the efficacies of the 
proposed. In addition, it can be seen that the rainfall 
datasets can be applied to the log-normal distribution  
and the gamma distribution are all right-skewed  
distributions, similar to the inverse-gamma distribution.  
Therefore, we are interested in analyzing rainfall data 
from two areas of Chiang Mai province in terms of the 
ratio of the coefficient of variation of two subsequent 
inverse-gamma distributions of the rainfall data as a 
guide for predicting natural disasters related to rainfall.
 The IG distribution is a continuous probability  
distribution that is skewed to the right which is  
commonly used as the marginal posterior distribution 
in Bayesian statistics. The probability density function 
of an IG distribution is given by

Where α is the shape parameter and β is the scale 
parameter. The population mean E(X) = β/(α – 1) 
for α > 1, variance Var(X) = β2/((α – 1)2 (α – 2)) for  
α > 2, and the coefficient of variation (CV) τ = 
CV(X) = . Studies on 
the IG distribution involving the point estimation of  
parameters have been rare so far. Llera and Beckmann  
[9] introduced an algorithm to approximate the  
parameters based on the method of moments, maximum  
likelihood, and Bayesian estimation for an IG distribution.  
Abid and Al-Hassany [10] estimated IG distribution 
parameters using the moment method, maximum 
likelihood, percentile, least-squares, and weighted 
least-squares estimators. Sun et al. [11] constructed the 
empirical Bayes estimators for the rate parameter of an 
IG distribution under Stein’s loss function. 
 Because the CV of an IG distribution is independent  
of the scale parameter, it is an interesting function 
in the study of interval parameter estimation. For 
example, confidence intervals for single of CV of 
an IG distribution was proposed by Kaewprasert  
et al. [12] who established confidence intervals based 
on the percentile bootstrap (PB) confidence interval, 
Wald, and score methods for one population CV of an 
IG distribution. Motivated by this, we extended the 
idea of statistical methods for comparing two CVs of 
IG populations have not been considered and are not 
available in the form of ratio. 

 Confidence intervals for two populations of 
the ratio of CVs of various distributions have been 
investigated by many researchers, such as Puggard  
et al. [13] who proposed confidence intervals using the 
biased-corrected and accelerated, the biased-corrected 
PB confidence interval, and the generalized confidence 
interval (GCI) for the ratio of CVs of Birnbaum-Saunders  
distributions. Yosboonruang and Niwitpong [14]  
proposed new confidence intervals using the concepts 
of GCI and the method of variance estimate recovery 
(MOVER) for the ratio of CVs of delta-lognormal  
distributions. Hasan and Krishnamoorthy [15]  
constructed confidence intervals of two lognormal 
distributions using fiducial approach and MOVER 
methods of the ratio of CVs. Nam and Kwon [16] 
proposed confidence intervals using the log method, 
Fieller-type, Wald-type, and MOVER approaches for 
the ratio of CVs of lognormal distributions. However, 
statistical research on confidence intervals for two 
independent CVs of IG distributions has not yet been 
reported and are not available for the two populations  
of the IG distribution, so this topic is of interest 
to study. Therefore, we herein propose confidence  
intervals for the ratio of CVs of IG distributions using 
confidence intervals based on PB, fiducial quantities 
(FQs), and Bayesian methods by Jeffreys and uniform 
priors. Rainfall data was used to illustrate the efficacies 
of the proposed methods. Since, the IG distribution can 
be utilized in the real-world applications, because the 
data used are of the data characteristics consistent and 
checking the fitting with the IG distribution. In addition,  
we can study other real data whose characteristics are 
suitable for the IG distribution, and we can apply those 
data to studies as well.

2 Methods

Suppose that Xij = (Xi1, Xi2,..., Xini 
) ; i = 1, 2, j = 1, 2,…, ni 

is a vector of random samples from an IG distribution  
denoted as  .  The CV of  Xij i s 

, and so the ratio of CVs (which of  
interest in this study) and Xij are independent, which 
can be expressed as

 (1)

The log-likelihood function can be written as
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The maximum likelihood estimators of αi and βi, are

 (2)

where Ψ represents the digamma function, and αi0 =  
 +2 using the moment of method estimation by Llera 

and Beckmann [9] for the shape parameter to initialize 
αi0 in Equation (2) ; where ui =  (xij – ui)2 and ui = 

 xij are the mean and variance estimated from the 
observed data xij = (xi1, xi2,..., xini 

), and

respectively. The method to construct the confidence 
intervals for η of an IG distribution are investigated 
next.

2.1  The PB confidence interval

Bootstrapping is a computer-based method for  
assigning measures of accuracy to statistical estimates 
[17]. For the PB, we use data to evaluate the sampling 
distribution and use these approximations to calculate 
the confidence intervals.
 Let xij = (xi1, xi2,..., xini 

) ; i = 1, 2, j = 1, 2,…, ni be 
an random sample of size ni. The estimator of η is  
given by

where  is the MLE of αi.  A bootstrap sample denoted as 
 is sample ni drawn with replacement  

from the original sample. Therefore, the bootstrap 
sample that corresponds to bootstrap is denoted as

where  is the MLE, which is calculated from .  
Assuming that B bootstrap samples are available, then 
B bootstrap can be obtained and ordered from the 
smallest to the largest. After resampling B bootstrap 
samples, we are calculated  in each bootstrap sample 
denoted by . In this study, we assumed 
that B = 1,000 bootstrap samples are taken.
 Therefore, the 100(1 –γ)% PB confidence interval 
for  is given by 

 (3)

where  denotes the 100(γ/2)-th  percentile .

Algorithm 1
• Step 1 Generate xij from IG(αi, βi), i = 1, 2, j = 

1, 2,…, ni

• Step 2 Drawn a bootstrap sample 
from Step (1) with replacement

• Step 3 Compute  from Step (2)
• Step 4 Compute  
• Step 5 Repeat Step (2)–(4), B = 1,000 times,  

 ordered from the smallest to the largest
• Step 6 Compute the 95% confidence interval 

for η from Equation (3)
• Step 7 Repeat Step (1)–(6) 15,000 times to 

compute the coverage probability (CP) and expected 
length (EL)
Define

 and 

where  is the number of simulation rans 
for η, and M is the number of simulation replications.

2.2  The FQ confidence interval

Krishnamoorthy and Wang [18] approximated FQs 
and obtained a gamma distribution based on cube 
root-transformed samples. Let Gi ~ Gamma(ai, bi) 
with shape parameter ai and rate parameter bi. Thus,  
Xi = 1/Gi is an IG distribution. 
 Suppose that  ; i = 1, 2, then Yi is an 
approximately normal distribution [19]. Thus, we 
transform it to an IG distribution accordingly.
 From  and Xi = 1/Gi, then Yi = (1/Gi)1/3 = 

 is approximately normally distributed with mean 
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μi and variance , giving . μi and  can 
be respectively expressed as αi and βi as follows:

 (4)

and

Define 

 and 

Thus, the sample mean and sample variance of Yi are 
respectively given by

and

where Zi and  are the standard normal and chi-
squared distribution, respectively.
 We can derive the respective FQs of μi and  as 
follows:

 

and

where  and  are the observed values of  and ,  
respectively. Solving the set of Equation (4) for αi and 
βi, we obtain

and

respectively. Hence, the FQs for the shape parameter 
can be derived as follows [18]

Subsequently, the FQs for η become

Therefore, the 100(1 –γ)% confidence interval of the 
FQs for η is given by

 (5)

where  and  are the -th and  
-th percentiles of the distribution of , 

respectively.

Algorithm 2
• Step 1 Generate xij from , i = 1, 2,  

j = 1, 2,…, ni

• Step 2 Compute  
• Step 3 Generate Zi and  
• Step 4 Compute , , , and 
• Step 5 Repeat Step (4) 5,000 times
• Step 6 Compute the 95% confidence interval 

for η from Equation (5)
• Step 7 Repeat Step (1)–(6) 15,000 times to 

compute the CP and the EL

2.3  The Bayesian methods

Consider a Bayesian posterior density function

where  is the likelihood function and  is 
the prior.
 Assuming that  is a normal distribution, 
then the likelihood function of Yi is given by
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Thus, we can apply the Bayesian method by Jeffreys 
and uniform priors accordingly.

2.3.1 The Jeffreys prior

This prior is defined as , where  
is the Fisher information function [20]. Therefore, the 
Fisher information matrix is defined as

Consider ,  
modeled as  where  is assumed known. 
The Fisher information of μi is given by .  
Subsequently, the Jeffreys prior of μi is  

. Similarly, the Jeffreys prior for a  
parameter  is . Therefore, the Jeffreys 
prior can be obtained by 

which when combined with the likelihood function, 
gives the posterior density function as follows:

Since μi and  are independent, the irrespective 
marginal posteriors are normal and IG distributions 
Dongchu and Keying [21] defined as

 (6)

and

 (7)

where  and .

To construct the Bayesian method by Jeffreys prior, 
α1  and α2 are substituted by  and  
defined in Equations (6) and (7), respectively.

for i = 1, 2 and compute η j by (α i)J based on  
Equation (1). Then

 Therefore, the  two-side confidence 
interval for the Bayesian method by Jeffreys prior for 
η is defined as 

 (8)

where LJ and UJ are the lower and upper bounds of the    
 credible confidence interval of ηJ.

Algorithm 3
• Step 1 Generate xij from , i = 1, 2,  

j = 1, 2,…, ni

• Step 2 Compute  
• Step 3 Compute  from Equation (6)
• Step 4 Compute  from Equation (7)
• Step 5 Compute 
• Step 6 Compute η by  from Step (5)
• Step 7 Repeat Step (3)–(6) 5,000 times
• Step 8 Compute the 95% confidence interval 

for η from Equation (8)
• Step 9 Repeat Step (1)–(8) 15,000 times to 

compute the CP and the EL

2.3.2 The uniform prior

For the uniform prior, μi and  are  and 
, respectively, so the IG distribution for the 

Bayesian method by uniform prior is . 
From Yang and Berger [22], the respective marginal 
posteriors of μi and  are defined as

 (9)

and

 (10)

where  and .

 Next, the Bayesian confidence interval is constructed  
using  and  from Equations (9) and 
(10), respectively.
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and compute ηU by  based on Equation (1).  
Then

 Therefore, the  two-side confidence 
interval for the Bayesian method by uniform prior for 
η is defined as 

 (11)

where LU and UU are the lower and upper bounds of 
the confidence limit, respectively.

Algorithm 4
• Step 1 Generate xij from , i = 1, 2,  

j = 1, 2,…, ni

• Step 2 Compute   
• Step 3 Compute  from Equation (9)
• Step 4 Compute  from Equation (10)
• Step 5 Compute 
• Step 6 Compute η by  from Step (5)
• Step 7 Repeat Step (3)–(6) 5,000 times
• Step 8 Compute the 95% confidence interval 

for η from Equation (11)
• Step 9 Repeat Step (1)–(8) 15,000 times to 

compute the CP and the EL

3 Results

3.1  Simulation study

The Monte Carlo simulation study was designed with 
the R statistical software [23] to compare the perfor-
mance of the confidence intervals for the ratio of the 
CVs of two independent IG distributions. The number 
of simulations used to generate samples from an IG 
distribution was 15000, as well as 5000 replications for 
the Bayesian methods, and 1000 bootstrap samples for 
the PB confidence interval. The nominal confidence 
level was 0.95. The best-performing method produced 
a CP greater than or close to the nominal confidence 

level and the shortest EL. Equal sample sizes were set 
as (n1, n2) = (10, 10), (30, 30), (50, 50), and (100, 100) 
and unequal sample sizes as (n1, n2) = (10, 30), (30, 
50), and (50, 100). 
 Data were generated for two independent 
IGs:  and . Since  is the scale  
parameter, we set  =  = 1, and adjusted α1 to obtain 
the required CV τ1. Last, we set (τ1, τ2) = (0.1, 0.5), 
(0.2, 0.5), (0.1, 0.2), (0.2, 0.4), (0.3, 0.5), (0.4, 0.5), 
and (0.5, 0.5). Thus, the ratio of the CVs of the two IG 
distributions η = 0.2, 0.4, 0.5, 0.6, 0.8, and 1.0.
 The CP and EL simulation results for the 95% 
confidence intervals for the ratio of the CVs of IG 
distributions with equal and unequal sample sizes are 
reported in Tables 1 and 2, respectively. For (n1, n2) 
= (10, 10), the confidence intervals constructed with 
FQs and the Bayesian method by uniform prior were 
close to the nominal confidence level of 0.95 but the 
EL of the FQ confidence interval was shorter. For (n1, 
n2) = (30, 30), (50, 50), and (100, 100) the Bayesian  
confidence interval by uniform prior performed  
better than the FQ confidence interval for almost all  
situations. For (n1, n2) = (10, 30), the CP of the FQ 
confidence interval was greater and its EL was shorter 
than the Bayesian method by uniform prior. For (n1, 
n2) = (30, 50), and (50, 100) the CP of the Bayesian  
confidence interval by uniform prior performed  
better than the FQ confidence interval for η ≥ 0.5 and 
vice versa for η < 0.5. Moreover, confidence intervals  
constructed using the Bayesian method by Jeffreys 
prior and PB method are not recommended for the 
ratio of the CV of IG distribution for either equal or 
unequal sample sizes.
 
3.2  An empirical study

Accurately estimating the amount of rainfall each year 
is useful for dealing with drought and flood problems in 
the summer and rainy seasons, respectively. To illustrate  
the efficacy of the methods for establishing confidence 
intervals for the ratio of CVs of IG distributions, we 
used monthly rainfall data series from two rain stations  
at Chiang Dao district, Chiang Mai province; there are 
30 observations in August, 1991–2020; and Samoeng 
district, Chiang Mai province; there are 50 observations  
in August, 1971–2020 as reported by the Upper  
Northern Region Irrigation Hydrology Center [24] 
(Table 3). 
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Table 1: The coverage probabilities and expected lengths of the 95% confidence intervals for the ratio of the 
coefficients of variation of two inverse-gamma distributions (n1 = n2)

(n1, n2) (τ1, τ2) η Coverage Probability (Expected Length)
CIPB CIF CIJ CIU

(10, 10)

(0.1, 0.5) 0.20 0.919 (0.379) 0.954 (0.401) 0.941 (0.376) 0.967 (0.431)
(0.2, 0.5) 0.40 0.913 (0.920) 0.951 (0.866) 0.935 (0.798) 0.966 (0.959)
(0.1, 0.2) 0.50 0.884 (0.763) 0.952 (0.853) 0.933 (0.795) 0.964 (0.930)
(0.2, 0.4) 0.50 0.916 (1.121) 0.954 (1.011) 0.939 (0.928) 0.967 (1.123)
(0.3, 0.5) 0.60 0.935 (1.534) 0.951 (1.551) 0.937 (1.377) 0.968 (1.760)
(0.4, 0.5) 0.80 0.931 (2.095) 0.954 (2.576) 0.936 (2.267) 0.967 (2.981)
(0.5, 0.5) 1.00 0.928 (2.494) 0.952 (3.654) 0.939 (3.215) 0.966 (4.127)

(30, 30)

(0.1, 0.5) 0.20 0.862 (0.134) 0.952 (0.199) 0.943 (0.192) 0.952 (0.201)
(0.2, 0.5) 0.40 0.885 (0.433) 0.949 (0.409) 0.942 (0.395) 0.954 (0.416)
(0.1, 0.2) 0.50 0.908 (0.456) 0.948 (0.407) 0.947 (0.398) 0.952 (0.414)
(0.2, 0.4) 0.50 0.868 (0.513) 0.949 (0.463) 0.941 (0.449) 0.951 (0.473)
(0.3, 0.5) 0.60 0.918 (0.646) 0.948 (0.650) 0.942 (0.627) 0.955 (0.668)
(0.4, 0.5) 0.80 0.920 (0.882) 0.942 (0.977) 0.943 (0.933) 0.952 (1.020)
(0.5, 0.5) 1.00 0.919 (1.089) 0.952 (1.403) 0.944 (1.324) 0.952 (1.479)

(50, 50)

(0.1, 0.5) 0.20 0.747 (0.103) 0.952 (0.148) 0.948 (0.145) 0.951 (0.149)
(0.2, 0.5) 0.40 0.867 (0.354) 0.946 (0.303) 0.948 (0.296) 0.953 (0.305)
(0.1, 0.2) 0.50 0.927 (0.379) 0.949 (0.304) 0.946 (0.300) 0.956 (0.307)
(0.2, 0.4) 0.50 0.859 (0.422) 0.948 (0.343) 0.947 (0.338) 0.948 (0.347)
(0.3, 0.5) 0.60 0.920 (0.491) 0.949 (0.476) 0.945 (0.465) 0.950 (0.481)
(0.4, 0.5) 0.80 0.923 (0.709) 0.945 (0.693) 0.949 (0.677) 0.948 (0.708)
(0.5, 0.5) 1.00 0.917 (0.877) 0.949 (0.942) 0.947 (0.912) 0.952 (0.959)

(100, 100)

(0.1, 0.5) 0.20 0.751 (0.073) 0.950 (0.102) 0.947 (0.100) 0.947 (0.102)
(0.2, 0.5) 0.40 0.834 (0.273) 0.949 (0.207) 0.949 (0.205) 0.947 (0.207)
(0.1, 0.2) 0.50 0.933 (0.298) 0.949 (0.210) 0.949 (0.208) 0.952 (0.211)
(0.2, 0.4) 0.50 0.830 (0.336) 0.949 (0.236) 0.949 (0.234) 0.948 (0.237)
(0.3, 0.5) 0.60 0.926 (0.343) 0.949 (0.323) 0.946 (0.319) 0.952 (0.324)
(0.4, 0.5) 0.80 0.926 (0.536) 0.946 (0.462) 0.944 (0.458) 0.949 (0.466)
(0.5, 0.5) 1.00 0.922 (0.654) 0.947 (0.609) 0.945 (0.599) 0.948 (0.614)

(a) Chiang Dao district (b) Samoeng district
Figure 1: The densities of the rainfall data from Chiang Dao and Samoeng districts, Chiang Mai province.
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 Figure 1 shows that the distributions of both rainfall  
datasets are right-skewed. We analyzed the distributions  
by applying the minimum Akaike information 
criterion (AIC) and the Bayesian information  
criterion (BIC) are defined as  and 

 where L is the likelihood 
function, k be the number of parameters, and n be the  
number of recorded measurement. The results in Table 4  
show that the rainfall data from both districts follow IG 
distributions since this distribution attained the lowest 
AIC and BIC values. In addition, Q-Q plots show that 
the rainfall data from the two districts fitted well to 

IG distributions (Figure 2). For the rainfall data series 
from Chiang Dao and Samoeng districts, the summary 
statistics are n1 = 30,  = 10.28, and  = 0.35 and n2 
= 50,  = 4.80, and  = 0.60, respectively. Therefore,  
the ratio of CVs  and  is η = 0.58. The 95%  
confidence intervals for η for both datasets are reported 
in Table 5. Once again, the CP of the Bayesian method by 
uniform prior performed better than the FQ confidence  
interval but, the length of the FQ confidence interval was 
shorter than that for the Bayesian method by uniform  
prior for (n1, n2) = (30, 50), there by confirming the 
results of the simulation study. 

Table 2: The coverage probabilities and expected lengths of the 95% confidence intervals for the ratio of the 
coefficients of variation of two inverse-gamma distributions (n1 ≠ n2)

(n1, n2) (τ1, τ2) η
Coverage Probability (Expected Length)

CIPB CIF CIJ CIU

(10, 30)

(0.1, 0.5) 0.20 0.823 (0.160) 0.948 (0.294) 0.936 (0.265) 0.956 (0.330)
(0.2, 0.5) 0.40 0.779 (0.468) 0.951 (0.654) 0.937 (0.575) 0.958 (0.755)
(0.1, 0.2) 0.50 0.930 (0.520) 0.951 (0.667) 0.942 (0.599) 0.957 (0.758)
(0.2, 0.4) 0.50 0.771 (0.560) 0.950 (0.776) 0.935 (0.677) 0.954 (0.903)
(0.3, 0.5) 0.60 0.874 (0.766) 0.951 (1.221) 0.938 (1.029) 0.959 (1.473)
(0.4, 0.5) 0.80 0.877 (1.023) 0.951 (2.158) 0.943 (1.799) 0.960 (2.563)
(0.5, 0.5) 1.00 0.849 (1.214) 0.952 (3.100) 0.943 (2.601) 0.963 (3.657)

(30, 50)

(0.1, 0.5) 0.20 0.747 (0.107) 0.953 (0.167) 0.946 (0.162) 0.950 (0.170)
(0.2, 0.5) 0.40 0.841 (0.374) 0.951 (0.345) 0.948 (0.335) 0.951 (0.353)
(0.1, 0.2) 0.50 0.927 (0.390) 0.948 (0.358) 0.948 (0.350) 0.954 (0.367)
(0.2, 0.4) 0.50 0.831 (0.448) 0.945 (0.398) 0.944 (0.389) 0.952 (0.409)
(0.3, 0.5) 0.60 0.918 (0.550) 0.948 (0.555) 0.943 (0.538) 0.955 (0.574)
(0.4, 0.5) 0.80 0.916 (0.751) 0.949 (0.863) 0.944 (0.819) 0.950 (0.898)
(0.5, 0.5) 1.00 0.908 (0.927) 0.949 (1.273) 0.943 (1.190) 0.955 (1.346)

(50, 100)

(0.1, 0.5) 0.20 0.770 (0.077) 0.950 (0.119) 0.947 (0.116) 0.950 (0.120)
(0.2, 0.5) 0.40 0.810 (0.301) 0.952 (0.245) 0.946 (0.241) 0.953 (0.248)
(0.1, 0.2) 0.50 0.932 (0.309) 0.949 (0.260) 0.951 (0.256) 0.952 (0.263)
(0.2, 0.4) 0.50 0.815 (0.373) 0.948 (0.286) 0.947 (0.280) 0.951 (0.290)
(0.3, 0.5) 0.60 0.916 (0.401) 0.951 (0.393) 0.949 (0.385) 0.951 (0.398)
(0.4, 0.5) 0.80 0.909 (0.587) 0.949 (0.589) 0.945 (0.572) 0.951 (0.603)
(0.5, 0.5) 1.00 0.904 (0.727) 0.948 (0.821) 0.947 (0.788) 0.950 (0.845)

Table 3: The rainfall data series from Chiang Dao and Samoeng districts, Chiang Mai province
Districts Rainfall (mm)

Chiang Dao
257.5 166.3 181.2 372.0 466.3 183.6 230.7 187.7 199.7 192.2
286.3 214.7 155.4 182.6 309.8 209.4 167.8 117.0 161.4 348.1
285.4 104.1 132.2 207.1 191.2 243.7 120.8 209.6 257.0 249.5

Samoeng

355.9 220.8 351.2 331.1 375.5 282.1 260.5 167.3 106.7 145.1
140.0 79.0 101.1 111.1 86.7 112.4 348.6 158.0 144.9 154.4
510 165.6 85.6 846.3 382.4 180.1 216.5 96.6 190.8 180.4

296.8 187.6 109.3 132.7 185.1 212.3 153.6 142.4 210.6 322.9
270.3 205.9 177.7 218.1 146.3 159.9 245.2 144.8 291.0 172.9
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4 Discussion and Conclusions

We constructed confidence intervals of two independent  
for the ratio of the CVs of an IG distribution using PB, 
FQs, and Bayesian methods by Jeffreys and uniform 
priors. We conducted a simulation study to compare 
their performances in terms of CP and EL. In the case of 
CP, the Bayesian method by uniform prior performed  
well for almost all situations whereas the FQ confidence  
interval performed well for small sample sizes. Moreover,  
the ELs of the FQ confidence interval were shorter than 
those of the Bayesian method by uniform prior. Although  
the ELs of the confidence interval constructed with PB 

and the Bayesian method by Jeffreys prior were shorter 
than those of the FQ and the Bayesian method by  
uniform prior confidence intervals, the CPs of the former  
two were less than the nominal confidence level, and so  
they are not recommended to construct confidence intervals  
for the ratio of CVs of IG distributions. In summary, 
we recommend the FQ confidence interval for small 
sample sizes (n1, n2 < 30) and the Bayesian method 
by uniform prior for large sample sizes (n1, n2 ≥ 30) to  
constructing confidence intervals for the ratio of CVs of 
IG distributions. Moreover, the length of the Bayesian  
method by uniform prior in the empirical study  
corresponded well with those from the simulation study.

Table 4: AIC and BIC results to check the distributions of the rainfall datasets
Rainfall Data Densities Normal Cauchy Exponential Lognormal Gamma IG

Chiang Dao, Chiang Mai
AIC 350.738 352.746 385.529 343.949 345.096 343.895
BIC 353.541 355.548 386.930 346.752 347.898 346.697

Samoeng, Chiang Mai
AIC 631.744 616.865 640.193 598.633 605.077 596.359
BIC 635.568 620.689 642.105 602.457 608.9013 600.183

Table 5: The 95% confidence intervals for the ratio of coefficients of variation of the rainfall datasets from the 
Chiang Dao and Samoeng districts, Chiang Mai province

Methods
Confidence Intervals for η

Length of Intervals
Lower Bound Upper Bound

CIPB 0.365 0.946 0.581
CIF 0.372 1.041 0.669
CIJ 0.388 1.009 0.621
CIU 0.375 1.053 0.678

(a)  Chiang Dao district (b) Samoeng district
Figure 2: Q-Q plots for fitting the rainfall data from the Chiang Dao and Samoeng districts, Chiang Mai, to 
inverse-gamma distributions.
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