

Research Article

The Study of MgO and/or ZrO₂ Modified Al₂O₃ for CO₂ Adsorption

Thaninee Chandarin, Supachai Jadsadajerm, Tanakorn Ratana, Sabaithip Tungkamani and Monrudee Phongaksorn* Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut's University of Technology of North Bangkok, Bangkok, Thailand

* Corresponding author. E-mail: monrudee.p@sci.kmuthb.ac.th DOI: 10.14416/j.asep.2022.09.004 Received: 28 April 2022; Revised: 4 June 2022; Accepted: 25 July 2022; Published online: 13 September 2022 © 2022 King Mongkut's University of Technology North Bangkok. All Rights Reserved.

Abstract

Alumina (Al_2O_3) is widely used as a sorbent in CO_2 adsorption and as a catalyst support in CO_2 utilization. For this application, the CO_2 adsorption ability is the most important property to be improved. Thus, this work presents the idea to modify the surface of a commercial alumina using an Mg-Zr mixed oxide. With this material, sites for CO_2 adsorption can be created by generating oxygen mobility property simultaneously with the basicity. To prove this hypothesis, alumina modified with MgO, ZrO₂, or Mg-Zr mixed oxide was prepared by an incipient wetness impregnation. The physicochemical properties of the bare alumina and the alumina modified with MgO, ZrO₂, or Mg-Zr mixed oxide were investigated using N₂ adsorption-desorption and X-ray diffraction. The achievement of oxygen mobility creation was quantitatively evaluated by O₂-temperature programmed desorption measurement. The CO_2 adsorption performance with the distribution of basic site strength was determined by CO_2 -temperature programmed desorption measurements. According to the results, the highest oxygen mobility was found in the alumina modified with Mg-Zr mixed oxide, which is approximately 1.7 times that of the bare alumina. The alumina modified with Mg-Zr mixed oxide showed the highest CO_2 capacity by approximately 1.4 times compared to the alumina. It is because the cubic ZrO_2 stabilized with MgO provided the number of oxygen vacancy sites that can be filled by oxygen atoms in adsorbed CO_2 corresponding to the moderate and strong basic sites.

Keywords: Oxygen mobility, Solid adsorbent, Alumina, Carbon dioxide capture, Magnesium oxide, Zirconia

1 Introduction

At present, the world is facing a climate crisis due to the rising impact of global warming caused by an increase in the emission of greenhouse gases (Green House Gases (GHG)). Among many greenhouse gases, carbon dioxide (CO₂) emission is considered a major problem because of the CO₂ accumulation in the Earth's atmosphere. In 2021, global CO₂ concentration reaches 415 ppm, 1.5-fold of the CO₂ concentration in 1750 [1]. This concentration is much higher than the safe concentration of CO₂ in the atmosphere (350 ppm) defined by the World Health Organization (WHO) [2]. In order not to release excess CO₂ into the atmosphere, there have been many researches attempts to develop technologies for this purpose.

Renewable energy technologies are considered the clean energy production derived from renewable sources such as biomass, wind, solar, and water. Their availability is still lower than the overall energy demand [3]. CO₂ capture utilization and storage (CCUS) is an essential emissions reduction technique that solves the problem of global warming by reducing CO_2 emissions [4]. CO_2 capture and storage is a set of technologies that capture CO₂ and then inject it into suitable underground storage reservoirs to prevent it from being released into the atmosphere. Rather than being stored underground, many studies utilized the captured CO₂ as a raw material for high value-added products. Thus, various approaches for CO₂ capture have been developed recently, including membrane separation, amine-based solvents, ionic liquids, and

cryogenic fractionation. However, these technologies have the problem of intensive regenerated energy consumption, and environmental corrosion problems [5]. Moreover, the difficulty of CO_2 separation from liquid absorbents is an obstacle to CO_2 utilization. To avoid this problem, the solid adsorbent for CO_2 capture is considered a more appropriate technique due to the easier and lower-cost separation [6].

Solid adsorbents are one of the most environmentally friendly materials involved in CO_2 capture and utilization technique due to their recoverability and reusability [7], [8]. The adsorbents, also known as solid sorbents, require various properties for adsorbing CO_2 consisting of a high specific surface area, pore structure, thermal stability, and basic surface. Adsorbents such as zeolites, carbon-based materials, metal-organic frameworks, and alkaline earth metal oxides have been studied by many works recently [9]–[11]. However, these adsorbents still showed the drawback of thermal and mechanical stability which obstruct their adsorption-regeneration cycle and commercial application.

Alumina (Al_2O_3) is a versatile material, which has many attractive properties including a large surface area, great thermal and mechanical stability, and acid-base surface properties. Consequently, Al_2O_3 is commonly used as an adsorbent as well as a catalyst support. Considering the acid-basic surface properties which show a strong effect on CO_2 adsorption, sites on the Al_2O_3 surface present a stronger acid than a basic [12]. As a result of the acidic nature of CO_2 , pure Al_2O_3 has a low CO_2 adsorption capability.

According to certain works, MgO is a promising material, which has high moderate basicity and adsorption/desorption capacities at medium to high temperatures. However, it has a lower surface area and pore structure than Al₂O₃, resulting in a problem of the loss of pore structure with the high regenerating temperatures [13]. ZrO_2 is also attractive as a metal oxide that has been utilized in a variety of catalytic CO₂ utilization due to its acid-basic surface and oxygen vacancy sites [14]–[16]. The appearance of the oxygen vacancy sites can promote basic sites on the surface [17]. The additions of alkaline metal oxides (Na, K) [18], [19], alkaline earth metal oxides (Ca, Mg) [20], [21], and transition metal oxides (Zr, Ni) [22], [23] raised the CO₂ adsorption capacity of Al₂O₃. Wang et al. reported that the Al₂O₃ with 30% of MgO loading showed the higher CO₂ adsorption capacity with the greater thermal and mechanical stability than pure Al_2O_3 [6]. Chavez *et al.* [24] studied the influence of Al_2O_3 content on the Al_2O_3 -ZrO₂ composite. The ZrO₂ incorporation into Al_2O_3 resulted in increased surface properties, protected sintering effect, and inhibited the crystallization of the γ - Al_2O_3 phase. Yan *et al.* [25] also studied acid-basic site property on Mg₂Zr_xAl_{1-x} mixed metal oxides catalyst for the synthesis of diethyl carbonate from urea and ethanol. The catalyst is derived from layer double hydroxide that MgO and ZrO₂ disperse homogenously in the Al_2O_3 matrix. The characterization results found that acid-base sites of the catalyst facilitate the reactant adsorption mechanism. Moreover, $Mg_2Zr_xAl_{1-x}$ mixed metal oxide provided the greater basic sites than pure Al_2O_3 .

However, there was no work studying on the surface of alumina modified with Mg-Zr mixed oxide for the CO_2 adsorption. The purpose of this work is to develop the CO₂ adsorption of the commercial Al₂O₃ surface with Mg-Zr mixed oxide using the uncomplicated preparation method. This study hypothesizes that MgO and ZrO₂ should have a high potential to enhance the basicity of the Al₂O₃ surface due to the basicity of MgO, the oxygen mobility of ZrO₂, and the great interaction of Mg-Zr-Al oxide. As a result, CO₂ adsorption-activation of Al₂O₃ will be then improved significantly. Moreover, the change of oxygen mobility with the CO₂ adsorption strength on the Mg-Zr mixed oxide modified Al₂O₃ surface is an interesting result to be evaluated. Thus, in this study, the CO₂ adsorption capability of the commercial Al₂O₃ was developed by modifying the surface with the co-functional MgO-ZrO₂ mixed oxide and compared to the single MgO and ZrO₂ oxide. MgO and ZrO₂, as a metal oxide and a mixed metal oxide, were dispersed onto Al₂O₃ via the incipient wetness impregnation method. The textural properties of commercial Al₂O₃, 5 wt%MgO-5 wt%MgO/Al₂O₃, 10 wt%MgO/Al₂O₃, and 10 wt%ZrO₂/Al₂O₃ were investigated using N_2 adsorption-desorption isotherm analysis. For the surface characterization, the crystalline phases were interpreted by X-ray diffraction (XRD). The weight percentage was determined via a scanning electron microscope equipped with energy dispersive X-ray spectrometer (SEM-EDX). The oxygen mobility of all samples was evaluated by O₂-temperature programmed desorption (O₂-TPD). The CO₂ adsorption strength and capability were measured employing

 CO_2 -temperature programmed desorption (CO_2 -TPD). All those properties of the MgO-ZrO₂ mixed oxide modified Al_2O_3 sample were compared with other samples and discussed.

2 Experimental Procedure

2.1 Material preparation

Samples of 10 wt%MgO/Al₂O₃, 10 wt%ZrO₂/Al₂O₃, and 5 wt%MgO-5 wt%ZrO₂/Al₂O₃ (coded as 10M/A 10Z/A and 5M5Z/A, respectively) were prepared by incipient wetness impregnation method. Al₂O₃ (UNILAB) powder was impregnated with the desired amount of aqueous solutions of Mg(NO₃)₂·6H₂O xH₂O (98%, Acros Organics) and ZrO(NO₃)₂·xH₂O (99.5%, Acros Organics). The wet powder was left at ambient temperature for 12 h. Thereafter, the samples were dried at 60 °C for 24 h and calcined at 600 °C for 4 h. Then, samples were pelletized and collected at the size range of 355 µm to 710 µm.

2.2 Characterization methods

A specific surface area, total pore volume, and average pore size diameter were calculated by Brunauer-Emmett-Teller (BET) model based on N₂ adsorption-desorption isotherm at -196 °C measuring with Quantachrome Autosorb-iQ-MP. The sample was degassed at 100 °C for 1 h and then at 300 °C for another 3 h until vacuum pressure was lower than 10^{-2} kPa before the measurement.

X-ray powder diffraction (XRD) pattern was collected via Rigaku SmartLab[®] with Cu-K α radiation at a scanning rate of 2°/min over the 2 θ range of 2°–85°.

The morphology of the sample surface was investigated by scanning electron microscope (SEM) via FEI ESEM Quanta 450 FEG) and the elemental composition of materials were identified by energy dispersive X-ray analysis (EDX).

Temperature programmed desorption of O_2 (O_2 -TPD) studies were performed employing BELCAT BASIC[®] for the measurement of the oxygen mobility of samples. Prior to the measurement, helium at a flow rate of 30 mL/min was supplied for 1 h to the reactor at 200 °C to remove any contaminants from the surface of the sample. Then, the adsorption of O_2 was processed at 200 °C for 1 h. Afterward, helium at 30 mL/min was supplied to the reactor again in order to purge out any O_2 residue and to cool down the sample to 40 °C. The O_2 desorption was investigated in helium flow from 40 °C to 900 °C at a heating rate of 10 °C/min and the adsorbed O_2 was detected by a thermal conductivity detector (TCD).

Temperature programmed desorption of CO_2 (CO_2 -TPD) studies were performed for the measurement of the basicity of samples (BELCAT BASIC[®]). To prepare the sample surface, the sample was heated at 200 °C for 1 h in helium flow to remove contaminants. The adsorption of CO_2 was operated at 40 °C with a CO_2 flow at 30 mL/min for 1 h, followed by a helium purge for 20 min to remove the physisorbed CO_2 . The CO_2 desorption was investigated from 40 °C to 900 °C at a heating rate of 10 °C/min. The adsorbed CO_2 was monitored by TCD.

Operation of some characterization items can refer to the literature [26]–[31].

3 Results and Discussion

3.1 BET analysis

The specific surface area (S_{BET}), total pore volume (V_{Total}), and average pore size (D_{pore}) of all samples are given in Table 1. As observed in Table 1, Al₂O₃ presented S_{BET} of 95 m²/g, V_{Total} of 0.25 cm³/g, and D_{pore} of 6.3 nm. From the results, the addition of MgO and ZrO₂ onto Al₂O₃ (10M/A, 5M5Z/A, and 10Z/Al) caused a decrease in S_{BET} and V_{Total}. It is indicated that the Al₂O₃ surface is covered by MgO and ZrO₂.

Considering the result of 10M/A, the addition of 10 wt% MgO displayed the smaller S_{BET} (92 m²/g) with the lower V_{Total} (0.20 cm³/g) and a smaller D_{pore} (3.2 nm) than Al₂O₃. Meanwhile, 10Z/A showed the lowest S_{BET} (88m²/g), V_{Total} of 0.23 cm³/g, and the largest average pore size (8.1 nm). The sample of 5M5Z/A represented the textural properties between 10M/A and 10Z/A (S_{BET} of 90 m²/g, V_{Total} of 0.22 cm³/g, and D_{pore} of 7.4 nm). The different textural properties of the impregnated samples are ascribed to the particle size of metal oxide being added. As can be seen in the results, Al₂O₃ doped ZrO₂ shows a higher effect of pore blocking than Al₂O₃ doped MgO [32], [33]. It indicated that the ZrO₂ particles should be larger than MgO particles. The 5M5Z/A exhibited

4

Figure 1: XRD patterns of Al_2O_3 , 10M/A, 5M5Z/A, and 10Z/A.

a larger S_{BET} with a smaller D_{pore} than 10Z/A. This result means that mixing MgO with ZrO_2 can against the migration of ZrO_2 resulting in the decrease of pore blocking effect of the ZrO_2 .

Table 1: BET analysis of MgO and ZrO₂ on Al₂O₃

Sample	$S_{BET} (m^2/g)$	V _{Total} (cm ³ /g)	D _{pore} (nm)
Al ₂ O ₃	95	0.25	6.3
10M/A	92	0.20	3.2
5M5Z/A	90	0.22	7.4
10Z/A	88	0.23	8.1

3.2 XRD analysis

The phase and crystalline structure of all samples were characterized via XRD analysis and diffractograms are illustrated in Figure 1. The diffractogram of Al₂O₃ represents the pattern of the mixed crystalline between α -Al₂O₃ (at $2\theta = 25^{\circ}$, 35° , 44° , 52° , 58° and 68°) and γ -Al₂O₃ (at $2\theta = 33^{\circ}$ 36.5° , 39° , 46° , 61° and 67°). It can be observed that the peak intensity of Al₂O₃ was decreased when MgO was added to the surface (10M/A). However, a small diffraction peak of MgO appeared at 2θ of 43° indicating the dispersion of MgO on the Al₂O₃ surface or MgO possibly merged with Al₂O₃ to form the spinel structure (Al₂MgO₄) [34].

Meanwhile, the characteristic peaks at 2θ of 30° , 50° , and 60° of tetragonal ZrO_2 (t- ZrO_2) were observed only in 10Z/A [35]. Nonetheless, the diffraction peaks of MgO and ZrO_2 were not distinguished from the

sample that involve both MgO and ZrO₂ (5M5Z/A). It can be implied that MgO may contribute to well dispersion of ZrO_2 on the Al_2O_3 surface. Moreover, the MgO diffraction peaks were rarely identified due to the sensitivity of this material and the below detectable limit of the MgO particle sizes [36].

3.3 SEM-EDX analysis

The surface morphology of Al_2O_3 , 10M/A, 5M5Z/A, and 10Z/Al all samples are displayed as SEM images in Figure 2(a)–(d) respectively. According to the SEM images, the pore structure of the Al_2O_3 surface tends to be reduced after impregnating metal oxides. It can be explained by the pore blocking effect of the additional metal oxide.

Figure 3 presents EDX analysis of all modified Al_2O_3 samples. The data generated by EDX analysis consist of spectra showing peaks corresponding to the elements in the composition of the sample being analyzed. The contents of Al, Mg and Zr for each sample are revealed and reported in Table 2. The presence of Mg and Zr elements was confirmed by the EDX analysis and this result demonstrated a dispersion of MgO and ZrO₂ on the Al_2O_3 surface. It was observed that the percent composition of Al, Mg, and Zr are close to the desirability.

Table 2: EDX analysis of weight percent of Al, Mg,and Zr elements for 10M/A, 5M5Z/A, and 10Z/A

Sample	Weight Percentage (wt%) of Metal			
	Al	Mg	Zr	
10M/A	89.3	10.7	-	
5M5Z/A	87.8	6.2	6.0	
10Z/A	89.9	-	10.1	

$3.4 \quad O_2-TPD$

The oxygen mobility of the adsorbent was investigated using temperature-programmed desorption of O_2 (O_2 -TPD) measurement. The O_2 desorption reflects the mobile oxygen species on the solid sorbent surface. O_2 -TPD profiles (Figure 4) could be deconvoluted into peaks of three temperature ranges. Peaks in the range of 50 °C to 200 °C are the adsorbed oxygen species at the surface. Peaks that appeared at 200 °C to 500 °C are ascribed to the adsorbed oxygen species underneath the surface. Peaks at a temperature higher

Figure 2: SEM images of (a) Al_2O_3 , (b) 10M/A, (c) 5M5Z/A, and (d) 10Z/A.

Figure 3: EDX analysis of (a)10M/A, (b) 5M5Z/A, and (c) 10Z/A.

than 500 °C correlate to the desorption of bulk lattice oxygen [37]–[39].

The amount of oxygen mobility of Al₂O₃, 10M/A, 5M5Z/A, and 10Z/A are reported in Table 3. The oxygen mobility of Al₂O₃ was 1.847 mmol/g. From the results, modified Al₂O₃ samples (10M/A, 5M5Z/A, and 10Z/A) provided higher oxygen mobility than Al_2O_3 . 10M/A and 10Z/A gave the total oxygen vacancies at 1.970 and 2.883 mmol/g, respectively. For 5M5Z/A, the oxygen mobility increased to 3.136 mmol/g. Thus, the mixed MgO-ZrO₂ can greatly enhance the oxygen mobility of Al₂O₃. Al₂O₃ involving ZrO₂ on the surface provided high oxygen mobility because ZrO₂ is the oxygen vacancy material. Al₂O₃ with Mg-Zr mixed oxide on the surface showed the highest oxygen vacancy sites because Mg²⁺ from MgO has an ionic radius of 0.65 Å which is smaller than Zr^{4+} (0.79 Å). Therefore, Mg²⁺ can substitute into ZrO₂ lattice resulting in more oxygen vacancy creation [36].

Figure 4: O_2 -TPD profiles of Al_2O_3 , 10M/A, 5M5Z/A, and 10Z/A.

Table 3: O_2 -TPD profile of Al_2O_3 ,10M/A, 5M5Z/A, and 10Z/A

	Oxygen Mobility (mmol/g)			
Sample	50–200 ° С	200–500 °C	> 500 °C	Total Oxygen Vacancy Site
Al ₂ O ₃	0.656	0.869	0.322	1.847
10M/A	0.202	0.915	0.853	1.970
5M5Z/A	0.222	2.150	0.763	3.136
10Z/A	0.271	1.882	0.730	2.883

3.5 *CO*₂-*TPD*

The CO₂-TPD technique begins with the adsorption isotherm of CO₂ on the clean surface of the material. Then, flushing the physisorbed CO₂ by the inert gas. Afterward, the temperature increased at the constant heating rate that the chemisorbed CO₂ was desorbed from different basic site strengths (Figure 5). Moreover, the total CO₂ desorption represents the total number of basic sites as well as the CO₂ adsorption capacity. Figure 5 shows the CO₂-TPD profiles of Al₂O₃, 10M/A, 5M5Z/A, and 10Z/A. Desorbed CO₂ could be attributed to adsorbed CO₂ on basic sites of materials. The

Figure 5: CO_2 -TPD profile of Al_2O_3 , 10M/A, 5M5Z/A, and 10Z/A.

distribution of basic site strength was determined using the area under the curve fitted by Gaussian calculation. CO_2 desorption peaks of all profiles could be evaluated into three temperature ranges of 50–200 °C, 200–500 °C, and 500–900 °C that are assigned to the desorption of weak, moderate, and strong adsorbed CO_2 , respectively due to the types of basic sites on the adsorbent surface. The weak basic sites correspond to Brønsted hydroxyl groups, moderate basic sites are associated with the Lewis acid-base pairing, and strong basic sites are attributed to low-coordination surface oxygen (O^{2-}) anions. The CO_2 adsorbed species are summarized in Table 4 accompanied by their structure [40]–[42].

The amount of each basic site was analyzed based on the peak area and the total amount of basic sites exhibit the CO_2 adsorption capacities concluding in Table 5. The CO_2 adsorption capacities are shown as a bar chart in Figure 6. As seen in Table 5, the adsorption of CO_2 on Al_2O_3 was detected only in weak and moderate basic sites, which is the property of the commercial Al_2O_3 . Among all samples, Al_2O_3 has the lowest adsorption capacity of CO_2 (0.873 mmol/g).

Figure 6: CO₂ adsorption capacity of Al₂O₃,10M/A, 5M5Z/A, and 10Z/A.

 Table 4: Adsorbed CO2 species on the surface of solid sorbent

Basic Site Strength	Adsorbed Species	Adsorption Site
Weak	Bicarbonate	Hydroxyl groups, Brønsted
Moderate	Bidentate Carbonate	Acid-base pairing, Lewis
Strong	Monodentate Carbonate	Low-coordination O ²⁻ , Lewis

Table 5: CO_2 -TPD profile of Al_2O_3 , 10M/A, 5M5Z/A, and 10Z/A

	Basic Sites (mmol/g)			
Sample	Weak	Moder- ate	Strong	Total/ CO2ads.cap.
Al ₂ O ₃	0.284	0.589	-	0.873
10M/A	0.409	0.517	0.047	0.973
5M5Z/A	0.217	0.801	0.236	1.254
10Z/A	0.208	0.640	0.131	0.979

Comparisons in Table 5 and Figure 6 represents that the addition of MgO and/or ZrO_2 onto Al_2O_3 improved the CO₂ adsorption capacity of Al_2O_3 . For the addition of MgO (10M/A), the amount of weak and strong basic sites increased. The CO₂ adsorption capacity is more informative to consider the CO₂ adsorption performance. The CO₂ adsorption capacity of 10M/A is 0.973 mmol/g which increased about 11% from the CO₂ capacity of Al_2O_3 . This result suggests the appearance of more basic sites that are ascribed to MgO. The additional ZrO_2 (10Z/A) increased the amount of moderate significantly. Then, the CO₂ adsorption capacity of 10Z/A increased to 0.979 mmol/g. Impregnating mixed metal oxides of MgO-ZrO₂ onto the Al₂O₃ (5M5Z/A) greatly enhanced the amount of moderate and strong basic sites and gave the highest CO_2 adsorption capacity. The CO_2 adsorption capacity of this sample was 1.254 mmol/g that increased 1.4 times higher than that of pure Al₂O₃.

The trend of oxygen mobility is similar to the trend of CO₂ adsorption capacity of all samples. It suggests that the oxygen mobility occurred by additional oxygen vacancy material plays an important role in CO₂ adsorption. Xin et al. reported that the oxygen vacancy acts as Lewis basic site and CO_2 is a Lewis acid [43]. This site can migrate consequence of the oxygen vacant position. CO₂ molecules are adsorbed on this site by filling the oxygen atom in the missing oxygen position causing in carbonate species at the surface [44]–[46]. These species will then become bidentate carbonate larger than monodentate carbonate [47]. Therefore, ZrO₂ incorporated with MgO prevents the migration of ZrO₂ and creates more oxygen vacancy sites. As a result, Mg-Zr mixed oxide modified Al₂O₃ produces a large amount of CO₂ adsorption sites that show a relatively high CO₂ adsorption capacity.

4 Conclusions

This study revealed the potential of Mg-Zr mixed oxide $(MgO-ZrO_2)$ as a co-functional material to modify the Al_2O_3 surface for CO_2 adsorption. Compared to Al_2O_3 , the impregnation of MgO, ZrO₂, or MgO-ZrO₂ onto Al₂O₃ enhanced the oxygen mobility and basicity of the Al_2O_3 surface, which increases the CO_2 adsorption. Among all samples, MgO-ZrO₂ modified Al₂O₃ provided the highest oxygen mobility of 3.136 mmol/g and showed the greatest CO₂ adsorption capacity of 1.254 mmol/g. It is because ZrO_2 incorporated with MgO create more oxygen vacancy sites than ZrO₂. This vacant site can be filled by oxygen atom of a CO_2 molecule, which forms carbonate species at the surface and splits into bidentate or monodentate carbonates. Consequently, the Mg-Zr mixed oxide increases the number of basic sites for moderate and strong basic strength on the Al₂O₃ surface. Thus, Mg-Zr mixed oxide modified Al₂O₃ is a great adsorbent of CO₂ and can be used as a support of catalysts for CO₂ utilization.

Acknowledgments

The authors gratefully acknowledge the research grant

from the Faculty of Applied Science, King Mongkut's University of Technology North Bangkok (grant number. 653119).

Author Contributions

T.C.: research design, methodology, investigation, data analysis, writing an original draft; S.J.: conceptualization, research design, methodology, investigation, data analysis, writing an original draft reviewing, and editing; T.R.: methodology, and data analysis; S.T.: data analysis and editing; M.P.: conceptualization, data curation, writing-reviewing and editing, funding acquisition project administration. All authors have read and agreed to the published this version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

- K. Adler, "Global CO₂ emissions to rise by 4.9% in 2021," 2021. [Online]. Available: https:// cleanenergynews.ihsmarkit.com
- [2] R. Lindsey, "Climate change: Atmospheric carbon dioxide," 2020 [Online]. Available: https://www. climate.gov
- [3] D. I. Ferrer, Supported Layered Double Hydroxides as CO₂ Adsorbents for Sorption-Enhanced H₂ Production. Switzerland: Springer International Publishing, May. 2016.
- [4] B. Acar, M. S. Başar, B. M. Eropak, B. S. Caglayan, and A. E. Aksoylu, "CO₂ adsorption over modified AC samples: A new methodology for determining selectivity," *Catalysis Today*, vol. 301, pp. 112– 124, Mar. 2018.
- [5] L. Li, N. Zhao, W. Wei, and Y. Sun, "A review of research progress on CO₂ capture, storage, and utilization in Chinese Academy of Sciences," *Fuel*, vol. 108, pp. 112–130, Jun. 2013.
- [6] F. Wang, C. Gunathilake, and M. Jaroniec, "Development of mesoporous magnesium oxidealumina composites for CO₂ capture," *Journal of CO₂ Utilization*, vol. 13, pp. 114–118, Mar. 2016.
- [7] B.Acar, M. S. Başar, B. M. Eropak, B. S. Caglayan, and A. E. Aksoylu, "CO₂ adsorption over modified

AC samples: A new methodology for determining selectivity," *Catalysis Today*, vol. 301, pp. 112–124, Mar. 2018.

- [8] E.Takaluoma, T. Pikkarainen, and K. Kemppainen, "Adsorption and desorption of metals onto reusable adsorbent," 2018. [Online]. Available: http://www.mwen.info
- [9] X.Jiao, L. Li, H. Li, F. Xiao, N. Zhao, W. Wei, and B. Zhang, "Influence of preparation parameters on the structural properties and the CO₂ capture performance of Mg–Zr solid sorbent," *Materials Research Bulletin*, vol. 64, pp. 163–170, Apr. 2015.
- [10] P. Tobarameekul, S. Sangsuradet, N. N. Chat, and P. Worathanakul, "Enhancement of CO₂ adsorption containing zinc-ion-exchanged zeolite NaA synthesized from rice husk ash," *Applied Science and Engineering Progress*, vol. 15, no. 1, Nov. 2022, Art. no. 3640, doi: 10.14416/j.asep. 2020.11.006.
- [11] J. Foungchuen, N. Pairin, and C. Phalakornkule, "Impregnation of chitosan onto activated carbon for adsorption selectivity towards CO₂: Biohydrogen purification," *KMUTNB: International Journal* of Applied Science and Technology, vol. 9, no. 3, pp. 197–209, Apr. 2016, doi: 10.14416/j.ijast. 2016.03.003.
- [12] F. Chen, "Aluminum coordination and Lewis acidity in transition aluminas," *Journal of Catalysis*, vol. 133, no. 2, pp. 263–278, 1992.
- [13] X. Jiao, L. Li, N. Zhao, F. Xiao, and W. Wei, "Synthesis and low-temperature CO₂ capture properties of a novel Mg–Zr solid sorbent," *Energy & Fuels*, vol. 27, no. 9, pp. 5407–5415, Jul. 2013.
- [14] M. Haneda, K. Takamura, Y. Doi, N. Bion, and L. Vivier, "Synthesis of ordered porous zirconia containing sulfate ions and evaluation of its surface acidic properties," *Journal of Materials Science*, vol. 52, no. 10, pp. 5835–5845, May 2017.
- [15] X. Wang, J. Zhao, Y. Li, S. Huang, J. An, R. Shi, and J. Ren, "Effects of surface acid–base properties of ZrO₂ on the direct synthesis of DMC from CO₂ and methanol: A combined DFT and experimental study," *Chemical Engineering Science*, vol. 229, Jan. 2021, Art. no. 116018.
- [16] W. Sumarasingha, S. Supasitmongkol, and

M. Phongaksorn, "The effect of ZrO_2 as different components of Ni-Based catalysts for CO_2 reforming of methane and combined steam and CO_2 reforming of methane on catalytic performance with coke formation," *Catalysts*, vol. 11, no. 8, Aug. 2021, Art. no. 984.

- [17] X. Liu, J. Ding, X. Lin, R. Gao, Z. Li, and W.-L. Dai, "Zr-doped CeO₂ nanorods as versatile catalyst in the epoxidation of styrene with tert-butyl hydroperoxide as the oxidant," *Applied Catalysis A: General*, vol. 503, pp. 117–123, Aug. 2015.
- [18] R. V. Siriwardane, C. Robinson, M. Shen, and T. Simonyi, "Novel regenerable sodium-based sorbents for CO₂ capture at warm gas temperatures," *Energy and Fuels*, vol. 21, no. 4, pp. 2088–2097, Jul. 2007.
- [19] H. Hayashi, J. Taniuchi, N. Furuyashiki, S. Sugiyama, S. Hirano, N. Shigemoto, and T. Nonaka, "Efficient recovery of carbon dioxide from flue gases of coal-fired power plants by cyclic fixed-bed operations over K₂CO₃-on-Carbon," *Industrial & Engineering Chemistry Research*, vol. 37, no. 1, pp. 185–191, Jan. 1998
- [20] L. Li, X. Wen, X. Fu, F. Wang, N. Zhao, F. Xiao, W. Wei, and Y. Sun, "MgO/Al₂O₃ sorbent for CO₂ capture," *Energy & Fuels*, vol. 24, no. 10, pp. 5773–5780, Oct. 2010.
- [21] A. Zukal, J. Pastva, and J. Čejka, "MgO-modified mesoporous silicas impregnated by potassium carbonate for carbon dioxide adsorption," *Microporous and Mesoporous Materials*, vol. 167, pp. 44–50, Feb. 2013.
- [22] V. Hornebecq, C. Knöfel, P. Boulet, B. Kuchta, and P. L. Llewellyn, "Adsorption of carbon dioxide on mesoporous zirconia: Microcalorimetric measurements, adsorption isotherm modeling, and density functional theory calculations," *The Journal of Physical Chemistry C*, vol. 115, no. 20, pp. 10097–10103, May. 2011.
- [23] K. Piyapaka, S. Tungkamani, and M. Phongaksorn, "Effect of strong metal support interactions of supported Ni and Ni-Co catalyst on metal dispersion and catalytic activity toward dry methane reforming reaction," *KMUTNB: International Journal of Applied Science and Technology*, vol. 9, no. 4, pp. 255–259, Oct. 2016, doi: 10.14416/j.ijast. 2016.10.001.
- [24] G. Chavez-Esquivel, J. C. Garcia-Martinez, J.

A. De Los Reyes, V. A. Suárez-Toriello, M. A. Vera-Ramirez, and L. Huerta, "The influence of Al₂O₃ content on Al₂O₃-ZrO₂ composite-textural structural and morphological studies," *Materials Research Express*, vol. 6, no. 10, Aug. 2019, Art. no. 105201.

- [25] T. Yan, W. Bing, M. Xu, Y. Li, Y. Yang, G.Cui, and M.Wei, "Acid–base sites synergistic catalysis over Mg–Zr–Al mixed metal oxide toward synthesis of diethyl carbonate," *RSC Advances*, vol. 8, no. 9, pp. 4695–4702, Aug. 2018.
- [26] B. Zen, Z. Pan, L. Shen, D. Zhao, J. Teng, H. Hong, and H. Lin, "Effects of polysaccharides" molecular structure on membrane fouling and the related mechanisms," *SSRN Electronic Journal*, vol. 836, Aug. 2022, Art. no. 155579.
- [27] B. Chen, X. Hu, J. Wang, R. Li, L. Shen, Y. Xu, and H. Lin, "Novel catalytic self-cleaning membrane with peroxymonosulfate activation for dual-function wastewater purification: Performance and mechanism," *Journal of Cleaner Production*, vol. 355, Jun. 2022, Art. no. 131858.
- [28] J. Liu, L. Shen, H. Lin, Z. Huang, H. Hong, and C. Chen, "Preparation of Ni@UiO-66 incorporated polyethersulfone (PES) membrane by magnetic field assisted strategy to improve permeability and photocatalytic self-cleaning ability," *Journal* of Colloid and Interface Science, vol. 618, pp. 483–495, Jul. 2022.
- [29] Z. Pan, B. Zeng, H. Lin, J. Teng, H. Zhang, H. Hong, and M. Zhang, "Fundamental thermodynamic mechanisms of membrane fouling caused by transparent exopolymer particles (TEP) in water treatment," *SSRN Electronic Journal*, vol. 802, no. 10, May 2021, Art. no.153252.
- [30] R. Zhang, Y. Xu, L. Shen, R. Li, and H. Lin, "Preparation of Nickel[@]Polyvinyl alcohol (PVA) conductive membranes to couple a novel electrocoagulation-membrane separation system for efficient oil-water separation," *SSRN Electronic Journal*, vol. 653, Jul. 2022, Art. no. 120541.
- [31] L. Han, C. Chen, L. Shen, H. Lin, B. Li, Z. Huang, and H. Hong, "Novel membranes with extremely high permeability fabricated by 3D printing and nickel coating for oil/water separation," *Journal* of Materials Chemistry A, vol. 10, no. 22, pp. 12055–12061, May. 2022.

- [32] S. Gandhi and S. Patel, "Dry reforming of methane over supported nickel catalysts promoted by zerconia, ceria and magnesia," *International Journal of Advanced Research in Engineering and Technology (IJARET)*, vol. 6, no. 10, pp. 131–146, Oct. 2015.
- [33] Zh. Li, Ch. Liu, X. Zhang, W. Wang, B. Wang, and X. Ma, "Effect of ZrO₂ on catalyst structure and catalytic sulfur-resistant methanation performance of MoO₃/ZrO₂-Al₂O₃ catalysts," *Kinetics and Catalysis*, vol. 59, no. 4, pp. 481–488, Aug. 2018.
- [34] N. I. Radishevskaya, Y. A. Nazarova, O. V. Lvov, N. G. Kasatsky, and V. D. Kitler, "Synthesis of magnesium aluminate spinel in the MgO-Al₂O₃-Al system using the SHS method," *Journal of Physics: Conference Series*, vol. 1214, Apr. 2019, Art. no. 012019.
- [35] M. S. Lanre, A. S. Al-Fatesh, A. H. Fakeeha, S. O. Kasim, A. A. Ibrahim, A. S. Al-Awadi, and A. E. Abasaeed, "Catalytic performance of lanthanum promoted Ni/ZrO₂ for carbon dioxide reforming of methane," *Processes*, vol. 8, no. 11, Nov. 2020, Art. no. 1502.
- [36] X. Jiao, L. Li, N. Zhao, F. Xiao, and W. Wei, "Synthesis and low-temperature CO₂ capture properties of a novel Mg-Zr solid sorbent," *Energy & Fuels*, vol. 27, no. 9, pp. 5407–5415, Aug. 2013.
- [37] Z. Qu, Z. Wang, X. Zhang, and H. Wang, "Role of different coordinated Cu and reactive oxygen species on the highly active Cu–CE–ZR mixed oxides in NH₃-SCO: A combined in situ EPR and O₂-TPD approach," *Catalysis Science & Technology*, vol. 6, no. 12, pp. 4491–4502, Feb. 2016.
- [38] W. Liu, L. Li, X. Zhang, Z. Wang, X. Wang, and H. Peng, "Design of Ni-ZrO₂@SiO₂ catalyst with ultra-high sintering and coking resistance for dry reforming of methane to prepare syngas," *Journal* of CO₂ Utilization, vol. 27, pp. 297–307, Oct. 2018.
- [39] E. I. Kauppi, K. Honkala, A. O. I. Krause, J. M. Kanervo, and L. Lefferts, "ZrO₂ Acting as a redox catalyst," *Topics in Catalysis*, vol. 59, no. 8–9, pp. 823–832, Apr. 2016
- [40] N. Dharmasaroja, T. Ratana, S. Tungkamani,

T. Somchamni, D. S.A. Simakov, and M. Phongaksorn, "CO₂ reforming of methane over the growth of hierarchical Ni nanosheets/Al₂O₃-MgO synthesized via the ammonia vapour diffusion impregnation," *The Canadian Journal of Chemical Engineering*, vol. 99, no. S1, pp. S585–S595, Oct. 2021

- [41] A. Smalenskaite, M. M. Kaba, I. Grigoraviciute-Puroniene, L. Mikoliunaite, A. Zarkov, R. Ramanauskas, and A. Kareiva, "Sol-gel synthesis and characterization of coatings of Mg-Al layered double hydroxides," *Materials*, vol. 12, no. 22, Nov. 2019, Art. no. 3738.
- [42] L. Santamaria, A. Arregi, J. Alvarez, M. Artetxe, M. Amutio, G. Lopez, and M. Olazar, "Performance of a Ni/ZrO₂ catalyst in the steam reforming of the volatiles derived from biomass pyrolysis," *Journal of Analytical and Applied Pyrolysis*, vol. 136, pp. 222–231, Nov. 2018.
- [43] C. Xin, M. Hu, K. Wang, and X. Wang, "Significant enhancement of photocatalytic reduction of CO₂ with H₂O over ZnO by the formation of basic zinc carbonate," *Langmuir*, vol. 33, no. 27, pp. 6667–6676, Jun. 2017.
- [44] B. Liu, C. Li, G. Zhang, X. Yao, S. S. C. Chuang, and Z. Li, "Oxygen vacancy promoting dimethyl carbonate synthesis from CO₂ and methanol over Zr-doped CeO₂ nanorods," *ACS Catalysis*, vol. 8, no. 11, pp. 10446–10456, Oct. 2018.
- [45] S. Song, J. Wei, X. He, G. Yan, M. Jiao, W. Zeng, and M. Shi, "Oxygen vacancies generated by Sn-doped ZrO₂ promoting the synthesis of dimethyl carbonate from methanol and CO₂," *RSC Advances*, vol. 11, no. 56, pp. 35361–35374, Nov. 2021.
- [46] X. Wan, L.Wang, S.Gao, X. Lang, L. Wang, T. Zhang, and W. Wang, "Low-temperature removal of aromatics pollutants via surface labile oxygen over Mn-based mullite catalyst SmMn₂O₅," *Chemical Engineering Journal*, vol. 410, Apr. 2021, Art. no. 128305.
- [47] Y. Wang, A. Lafosse, and K. Jacobi, "Adsorption and reaction of CO₂ on the RuO₂(110) surface," *Surface Science*, vol. 481, no. 1–3, pp. 113–118, Jun. 2001.