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Abstract
In this paper, disturbance rejection of DC motor PID trajectory control systems is enhanced for independent joint 
control of robot arms. The concept of disturbance observer is invoked to propose a linear auxiliary control that 
augments existing PID controllers. The design of the auxiliary control is developed using a state space approach 
rather than transfer function approaches commonly employed in many existing designs derived from the concept 
of disturbance observer. This provides new insight and leads to a compact design requiring only two design 
parameters. While many of the existing DC motor trajectory control systems assume the availability of current 
feedback from a motor coil, the proposed auxiliary control does not. This can highly facilitate its applications 
in the lacking situation. Realizing that the stability of the resulting control systems could be inconvenient to 
assert due to increased system dimension resulting from incorporating disturbance observer, compact criteria 
for asserting robust stability using readily available results is given explicitly. To evaluate the capability of the 
auxiliary control for disturbance rejection, experimental results on a DC joint motor of an articulated robot arm 
are given. In presence of smooth and abrupt loading variations due to gravity, it appears that the tracking error 
of the enhanced system can be approximately 67% of that of the unenhanced system. This result is consistent 
in all three rounds of experiments.
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1 Introduction

When chosen appropriately, a robot could simultaneously  
deliver speed, flexibility, precision, repeatability, and 
safety for many tasks at an economical cost [1]–[3]. It 
is evident from the literature that the use of robots has 
increased significantly in recent years.  In particular, 
articulated robot arms have been widely employed for 
tasks that require trajectory tracking capability, such 
as welding and paint spraying. This is primarily due 
to their structure, which allows a satisfactory level of  
dexterity for various demanding applications. However,  
the structure also dictates that their revolute joints are 
normally subjected to significant loading variation 
due to gravity. When an articulated robot arm handles 
fixed loads along fixed trajectories, the corresponding 
joint tracking errors are usually small because accurate 

compensation for the variation could be pre-computed. 
When operations concern with uncertainty, such  
compensation is not possible and the corresponding 
joint motor controllers have to rely on feedback signals 
only.  In this situation, the controllers should be able 
to reject disturbance effectively, or tracking errors 
could grow significantly. For articulated robot arms, 
this particularly important property can be delivered 
by various types of controllers with varying degrees of 
success. A time-tested standard type for independent  
joint control is PID control [4]. Advanced robust 
control techniques, such as sliding-mode control and 
adaptive control have been applied to this problem 
in many researches [5], [6]. It has been shown that  
intelligent control techniques, with fuzzy logic and 
neural networks in particular [7], [8], could yield 
successful results for this application.  Among many 
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choices of available control techniques, PID controls  
are advantageous in that they can be designed  
systematically by using well-established classical 
control theory. Its records of successful applications, 
tuning techniques, and known theoretical and practical 
results are abundant.  Because of these, PID controls 
are widely adopted in many industrial applications 
even in the present day. These include industrial  
trajectory tracking robots.
 Disturbance observer is a controller design  
technique primarily developed to deal with the  
problem of disturbance rejection. The original concept 
was proposed in Ohishi et al., 1983 [9] to estimate 
loading torque applied to a DC motor speed control 
system, allowing rapid compensation accordingly. This  
technique is advantageous in that it allows separation  
of controller design for nominal systems, and  
disturbance rejection.  In addition, it is sufficient to 
use simple smooth linear control laws for both. This 
desirable characteristic usually allows a convenient  
conclusion of stability using numerous existing  
analytical results. It has been investigated, extended, 
and applied in various fashions to produce successful 
results. A review paper [10] summarizes comprehensive  
development and many satisfactory applications 
of disturbance observer for over the last three  
decades. Emre and Kouhei, 2015 [11] proposed useful 
design guidelines that concern stability and robustness  
of DC motor control systems with disturbance  
observer.
 While disturbance observer has been successfully 
employed in several applications of DC motor controls 
as mentioned previously, many are derived by using 
transfer function approaches.  In addition, they assume 
availability of current feedback from motor coil, which 
may not be readily available or very inconvenient to 
obtain in some practical situations. In this study, a  
design of disturbance observer for DC motor trajectory 
control is differently proposed by using a state-space 
approach. This provides new insights and leads to a 
new compact design technique. For this, availability 
of current feedback from motor coil is not assumed.  
This allows applications of the proposed technique in 
situations where existing techniques do not. This paper  
considers a practical industrial situation in which 
a DC motor is employed to drive a robot joint for  
trajectory tracking using a PID controller. It proposes a 
technique for suppressing tracking error due to loading 

variation by augmenting a linear auxiliary controller 
to the existing PID controller. The auxiliary controller 
is derived from the concept of a disturbance observer. 
The proposed controller operates solely on motor shaft 
angular position and speed feedback signals. Neither 
pre-computed loading torque nor current feedback is 
required. A convenient condition for guaranteed input-
to-state stability is given. Performance of the auxiliary 
controller is evaluated by performing experiments 
on a joint motor of an articulated robot arm. When 
the motor is subjected to smooth and abrupt loading  
variation, it appears consistently in experiments that 
the auxiliary controller can reduce the tracking error 
of an existing PID control system significantly.

2 Mathematical Model of DC Motors with  
Mechanical Transmission

Brushed DC motors are electromechanical devices  
employed to drive the joints of many small and  
medium-sized robots. They possess desirable  
characteristics of being economical and simple 
to drive. They give a good level of torque, which 
is required to achieve high angular acceleration 
and performance of robot joints.  However, their  
mechanical commutation produces brush wear 
and requires periodic maintenance. Electronic  
commutation is employed in a 3-phase brushless DC 
motor to eliminate the use of mechanical brushes. The 
fact that such commutation can produce significant 
torque ripple is long known [12]. This undesirable 
characteristic could be considerably suppressed by 
using specialized modern electronic drives, such as 
ODrive, although the associated cost could be more 
than that of the motor. Details of commutation is not 
discussed in here, and ideal commutation is assumed 
in the rest of the discussion.   
 Although a mathematical model of DC motors 
with mechanical transmission is a topic that can be 
found in many works of literature on dynamic systems 
and control, it is discussed briefly in this section so 
that critical meanings of parameters and terms can be 
made certain.  Consider the schematic diagram of a  
DC motor with mechanical transmission depicted 
in Figure 1. All the notations associated with it are 
given in Table 1. Typically, the parameters Jm, bm, and 
bL are regarded as constants, while JL can increase  
considerably when the robot handles heavy objects. 
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Table 1: Parameters, torques, and variables associated 
with a DC joint motor and mechanical transmission

Symbol Meaning (unit)

Jm
mass moment of inertia of rotor about rotational 
axis (kg.m2)

JL
mass moment of inertia of driven object about  
rotational axis (kg.m2)

J effective mass moment of inertia (kg.m2)
bm coefficients of viscous friction of rotor (N.m.s/rad)
bL coefficients of viscous friction of object  (N.m.s/rad)
b effective coefficients of viscous friction (N.m.s/rad)
KT motor torque constant (N.m/A)
Kb back-EMF constant (V.s/rad)
R coil resistance (Ohm)
L coil inductance (Henry)

Tm
motor torque generated by electrical current in  
motor coils (N.m)

TL loading torque applied to the driven object (N.m)

Ti
torque exerted to the rotor by transmission input 
shaft (N.m) 

To
torque exerted to the driven object by transmission 
output shaft (N.m)

Td effective loading torque (N.m)
V input voltage to motor coil (V)
θ angular displacement of the rotor (rad)
θL angular displacement of the driven object (rad)
i electrical current in motor coil (A)
rT transmission ratio 
ηg transmission efficiency

 According to Figure 1, Newton-Euler moment 
equations can be written as [13]:

 (1)

 (2)

where θ and θL are the angular displacement of the 
rotor and the driven object, respectively. Note that 
Equations (1) and (2) are for the rotor and the driven 
object respectively.
 Mechanical energy transmission from rotor to 
driven object is described by:

 (3)

where ηg is the transmission efficiency. Equation (3) 
can be written as:

 (4)

where rT ≡ θ/θL is the transmission ratio. For robots, 
Equation (4) is normally written so that rT > 1 for 
torque amplification. It follows that θ = rT θL, implying 
that  and that . From these equations, 
it can be shown that:

 Because the motor torque Tm is proportional to 
the electrical current i in motor coils, it follows that 
Tm =  where KT is torque constant of the motor.   
Substitute this in the above equation to obtain:

 (5)

where  is the effective mass  
moment of inertia of the motor-transmission system, 

 is the effective coefficient of 
viscous friction, and  is the effective 
loading torque. During robot operations, there can be 
variations of JL, or TL, or both can vary simultaneously.  
These change the values of J and Td, and usually yield 
undesirable consequences for the control system. 
To alleviate these, typical robot joints could use a  
transmission ratio rT that is significantly larger than JL 
and the ratio  is much smaller than Jm. With 
this, variation of JL affects the value of J so slightly 
that J can usually be regarded as a constant. Because 

, effects of TL on Td can be attenuated 
considerably by using a large value for rT. Notice that 

Figure 1: Schematic diagram of a typical joint motor 
with mechanical transmission.
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the attenuation on TL is due to rT while that on JL is 
due to . Accordingly, the degree of attenuation on TL 
is much weaker than the other. This paper discusses 
a typical situation in which variation of JL about its 
nominal value is small and rT is fairly large, making 
it reasonable to neglect variation of J. Given this, it is 
desirable to attenuate effects of Td on tracking error.  
Note that the Coulomb friction moment about the  
rotation axes of the rotor and the driven object may be 
considered a part of Td for convenience.  
 In Figure 1, motor electrical parameters are coil 
inductance L, coil resistance R, and back-EMF constant 
Kb. Kirchhoff's voltage law [13] is applied to the circuit 
of motor coil to obtain:

 (6)
 
where V is the input voltage to motor coil. Typically,  
dynamics of the coil current i is much faster than that 
of the angular displacement θ of the rotor. This can 
be shown mathematically by obtaining the Laplace  
transform of θ from Equations (5) and (6), and making 
use of the fact that the values of J, L, and b are typically 
much smaller than that of the remaining parameters.  
With this, dynamics of θ in Equations (5) and (6) can be 
approximated by the following reduced-order model:

 (7)

Typically, Bode plots of transfer functions θ(s)/V(s) and 
θ(s)/Td (s) from Equations (5) and (6) and those from 
Equation (7) are almost identical when frequencies  
of V(t) and Td (t) do not exceed 1 kHz. Electronic 
hardwares of many trajectory tracking robots are such 
that V(t) obeys this frequency bound. The frequency of 
Td (t) is typically much lower than that. These justify 
the use of Equation (7) to approximate Equations (5) 
and (6) in this frequency range. Note that some robot 
control systems may not have a sensor and relevant 
electronic circuitry for measuring i. In this situation, it 
is convenient to use Equation (7) rather than Equations 
(5) and (6) for the proposed controller design.

3 Controller Design

By assumption, the values of all parameters can be  

reasonably regarded as constants. They can be  
determined accurately by using appropriate setup and 
modern precision measuring instruments. This is not 
the case for Td, which can vary significantly in various 
fashions, and its value is generally unknown to the 
controller. However, a joint motor controller should be 
designed specifically to handle this, or tracking error 
could grow unacceptably.   
 Now define state variables q1 ≡ ∫ θ dt, q2 ≡ θ,  
q3 ≡ , and state vector q ≡ [q1 q2 q3]T. These state 
equations and Equation (7) can be written in vector-
matrix form as:

or

 (8)

where the control input u is the input voltage V.  
Accurate value of θ must be available for feedback  
at all times. This allows us to determine ∫ θ dt 
very accurately. Theoretically, θ cannot be used to  
determine  very accurately. Because of this, it is 
usually required that  is available for feedback when 
satisfying performance is expected. Let θr be the  
reference trajectory for the joint angle θ. Now, define 
r1 ≡ ∫ θr dt, r2 ≡ θr, r3 ≡ r, and r ≡ [r1 r2 r3]T. Because 
the reference trajectory θr is known prior to operating  
the robot, it follows that the reference vector r is 
known. Accordingly, the error vector is obtained as  
e ≡ r – q ≡ [e1 e2 e3]T.  
 The resultant control input u is composed of two 
components:

u = un + ua (9)

where un = –Ke is the nominal PID control, K = [k1 k2 k3]  
∈ ℜ3, and ua is the auxiliary control to obtain. The 
former component is to stabilize the system with  
acceptable performance, while the latter component 
is to attenuate effects of Td. Substitute u = un + ua,  
q = r – e, and  in Equation (8) and manipulate 
terms to obtain the following equation: 
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 (10)

where , , and . Here, the 
nominal PID control un is to be designed or is readily  
available prior to design the auxiliary control ua.  
Disturbance rejection of the nominal control system 
need not be very satisfactory because it could be  
improved by augmenting the auxiliary control. 
A design technique for the nominal control is not  
discussed in here because there already are several 
existing techniques, which can be employed to produce 
satisfying results. Although the two control components  
are designed separately, the resultant control u must be 
able to guarantee the stability of the resulting control 
system.
 To obtain the auxiliary control, denote the  
elements A(3,3), (3,1), and (3,1) by a, , and  
respectively. Notice that the structures of  and 
indicate that u and Td have direct effects on . Extract 

 from Equation (10), and manipulate terms to obtain 
that: 

 (11)

 The term TΣ in the right-hand side of Equation (11)  
could be considered as the total disturbance resulting 
from the loading torque Td, and time-varying nature 
of the reference trajectory θr. If this term is absent, 
the result is an ideal linear dynamical system, for 
which existing controller design techniques could be 
employed to obtain a nominal control that delivers 
very satisfactory results. In this paper, the concept of 
disturbance observer is employed to derive an auxiliary 
control ua for suppressing TΣ. By direct observation, it 
could be seen from Equation (11) that a possible choice 
of ua for this purpose is:

 (12)

where an is a nominal value of a, n is a nominal value 
of , γ is a design parameter that governs strength of 
suppression on the total disturbance, ,  

 is the second time derivative of the reference  
trajectory θr, and  is an approximation of . Because 
the reference trajectory θr is known before operating 
the robot,  can be computed accordingly. Depending  
on how accurately n approximates , it 
is recommended that 0< γ ≤ 1. When the accuracy is 

low, accurate disturbance compensation should not 
be expected in the beginning. In this situation, a small 
value of γ should be selected. It can be increased when 
satisfactory disturbance rejection is observed from  
system responses. Note that  is employed rather than 

 because the angular acceleration  is not available for 
feedback. It is elected that  is the output of a Low-
Pass Differentiator (LPD) whose input is the angular  
velocity  ≡ q3 of the rotor. The LPD is simply a 
cascading combination of a differentiator and a  
low-pass filter. The reason for using a differentiator is 
obvious, while the reason for using a low-pass filter 
is because differentiation of the velocity is usually 
very sensitive to noises. A second-order filter with 
two repeated poles is elected for this. Note that yf  is 
now employed to denote the output of the LPD to 
avoid confusion of similar symbols, and the following 
transfer function is proposed for the LPD:

where yf (s) and Q3 (s) are Laplace transform of yf and 
q3 respectively.  The parameter af ∈ ℜ+ determines the 
cut-off frequency of the filter, which must be greater 
than zero for the stability of the filter. It should be 
slightly higher than the frequency of the load torque 
to obtain valid filter output while suppressing noises.   
Because  is immediately affected by variation of Td, 
the value of this parameter should be higher than the 
highest expected frequency of Td and smaller than the 
lowest frequency of expected noises. It can be shown 
that a state-space representation of the LPD is given by:

 (13)

 (14)

where w1 and w2 are state variables of the LPD.  
 Structure of the proposed control system is shown 
in Figure 2. The signals θ and  are drawn from the 
joint motor assembly. Next, θ ≡ q2 and  ≡ q3 are fed 
to an integrator and the LPD respectively to obtain the 
signals ∫ θ dt ≡ q1 and . The nominal PID controller  
takes [q1, q2, q3] and [∫ θr dt, θr, r] to produce  
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the nominal control un = –Ke. The auxiliary controller  
employs un, , r, , and r in accordance with  
Equation (12) to produce the auxiliary control ua.  
Finally, the resultant control u = un + ua can be obtained.
 The resultant control can be written in a compact 
form, which is convenient for real implementation. For 
this, recall from Equation (9) that u = un + ua. Now, 
substitute for ua using Equation (12), and substitute  
un = –Ke to produce: 

 By substituting K = [k1 k2 k3] in the above equation 
and manipulating terms, it can be shown that:

 (15)

where ,  

, , , and .  

4 Stability Analysis

Recall that Equation (7) approximates the dynamics 
of the DC joint motor in Equations (5) and (6) very 
well, and allows convenience of designing controllers  
without using i as a feedback signal. However,  
Equations (5) and (6) are employed for analyzing the 
stability of the resulting control system in this section  
because of crucial importance of stability in any  
control system.  
 Recalling state variables q1 ≡ ∫ θ dt, q2 ≡ θ, and  

q3 ≡  defined previously, now define an additional  
state variable q4 ≡ i. These state equations may be  
written with Equations (5) and (6) in vector-matrix 
form as:

 (16)

 Dynamics of the LPD in Equations (13) and (14) 
can be augmented to Equation (16) to produce:

and

 For later development, write the above state  
equation in a compact form:

 (17)
 
 The dimension of the state-space system in  
Equation (17) is six.  For stability analysis, it is  
desirable to rewrite the resultant control u ≡ –Kf ef in 
Equation (15) to accommodate this. Recall from the 
previous section that:

where it has been defined that , and .  

Figure 2: Schematic diagram of the proposed control 
system.
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For compact representation, denote . With this, 
the last equation can be written as:

 Now, substitute  from Equation (14)  
in the above equation. With some vector manipulation, 
it can be shown that:

 Finally, it can be shown that:
  

 (18)

where , 
 and .   

 To obtain error dynamics corresponding to the 
system in Equation (17), define ,  
and . Substitute , ,  
and   f rom Equat ion  (18)  in  
Equation (17) to obtain:

 (19)

where   and 
. Note also that p(t) is a bounded  

perturbation vector that does not depend on ew. The  
error dynamics of Equation (19) is in a form that can be 
employed to assert input-to-state stability of the control 
system using existing results. This type of stability 
guarantees that all trajectories of the system converge 
to a neighborhood about the origin when p(t) ≠ 0, 
and the extent of this neighborhood increases as the  
magnitude of p(t) increases. Clearly, this is a reasonable  
condition for the application of interest. It can be 
shown that input-to-state stability is guaranteed when 
the origin of the system in Equation (19) is uniformly  
globally exponentially stable [14]. In the case of 
interest,  is a constant matrix. Accordingly, this is 
equivalent to the condition that  is strictly Hurwitz.  

 All the motor parameters determined in practice 
are associated with some degrees of error. However, 
the robustness of the control system to parameter 
uncertainty is not discussed extensively here because 
the present aspect of interest is disturbance rejection.  
Theoretically, the condition that  is strictly Hurwitz 
guarantees that the system is input-to-state stable when 
values of all the parameters are sufficiently accurate.  
If accurate values of some parameters are not available,  
then their upper and lower bounds should be determined.  
Using these bounds, existing robust stability analysis 
theorems can guarantee that the control system is  
robustly stable for all possible values of the parameters 
within such bounds. For readers particularly interested 
in robust stability of linear systems, such theorems can 
be found in [15]–[17].  

5 Experimental Results

In this section, the design of the proposed auxiliary 
control and stability analysis of the resulting trajectory-
tracking DC motor control system are shown. The 
motor is to drive a revolute joint of an articulated robot 
arm.  This joint is connected to link 3 and the wrist of 
the robot arm as shown in Figure 3. Because the center 
of mass of the link and wrist assembly is not on the 
rotation axis of the joint, the joint motor is subjected 
to variation of loading torque due to gravity as shown 
in Figures 3 and 4. The nominal values of the relevant 
parameters are given in Table 2. 

Figure 3: Joint motor and links of the articulated robot 
arm in the experiments.
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Table 2: Values of parameters of DC joint motor with 
mechanical transmission in Equations (5) and (6)

Symbol Meaning (value)
J effective mass moment of inertia (0.00017 kg.m2)
b effective coefficients of viscous friction (0.0023 

N.m.s/rad)
KT motor torque constant (0.185 N.m/A)
Kb back-EMF constant (0.185 V.s/rad)
R coil resistance (5.2 Ω)
L coil inductance (2.0 mH)

 Note that values of parameters R, and L are  
directly measured by a precision instrument. The others  
are obtained indirectly from experiments on the actual 
joint motor of the robot. Substituting these values 
in the mathematical model of Equations (5) –(7), it 
can be verified that resulting system responses from  
numerical simulations are very similar to corresponding  
actual system responses. These hold for step and 
sinusoidal inputs of different magnitudes, indicating 
that the values are valid estimations of the respective 
parameters. The joint of interest employs a mechanical  
transmission ratio of rT = 100. The angular displacement  
of the joint motor shaft is measured by an incremental  
encoder and a decoding circuit, giving 2048 pulses 
per motor shaft revolution, or 204800 pulses per 
joint revolution. The angular velocity of the shaft is  
approximated by using filtered backward differentiation  
of the angular displacement.  This is a typical practice 
employed in industrial robots and research including  
Ohishi et al., [9], and it has been experimentally 

verified that the approximation is valid. The sampling  
period of the control system is 1 ms. Consider 
the situation in which the joint motor is to track a  
reference trajectory without attaching any additional 
mass directly to link 3 and the wrist. In this situation, 
it is reasonable to treat the effective mass moment of 
inertia J as a constant.  
 Now that accurate values of all parameters are 
available, the reduced-order model in Equation (10) is 
employed to obtain the nominal PID control un. Note 
that the existing hardware of the robot has neither a 
sensor nor an electronic circuit for measuring current in 
the motor coil. No modification is made to incorporate  
these into the existing hardware because this is 
very inconvenient, expensive, and time-consuming.  
In addition, adopting coil current for feedback means 
that the control program must be modified accordingly.  
A nominal PID control can be obtained by using any 
existing techniques. Here, LQR (Linear Quadratic  
Regulator) theory is employed because it is a  
well-known technique and is capable of giving a  
satisfactorily large stability margin [15]. The design of 
a PID controller using LQR theory is not of interest  
to this paper, so it is briefly summarized in the  
following. Without the auxiliary control, u = un = –Ke,  
and the corresponding performance index of the LQR 
is:

where it is imposed that Q and R are diagonal 
and positive definite symmetric for simplicity. It  
appears in numerical simulations and experiments 
that acceptable results can be obtained by choosing 
R = [1] and:

 The corresponding nominal linear feedback gain 
matrix is K = [–1 –10.1–0.83]. The eigenvalues of 

 are s1 = –215.48, s2 = –9.71, and s3 = –0.10. 
They are all in the LHP, indicating that the nominal 
control system is asymptotically stable.
 The auxiliary control ua is now introduced to 
improve the ability to reject effects of Td. The resultant 
control u = un + ua is determined from Equation (15). 

Figure 4: A setup for introducing abrupt loading torque 
to the joint motor.
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Setting γ = 0.5 to allow moderate suppression of total  
disturbance and af = 10 to allow compensation for 
Td at reasonable frequencies, it can be shown that  
u = –Kf ef in which:

 To investigate the stability of the resulting 
tracking control system, Equations (18) and (19) are 
employed. The above resultant control corresponds to 
the gain matrix:

 Using definitions of matrices Aw and Bw given in 
Section 4, it can be shown that  is:

 The eigenvalues of the matrix  are s1 = –2219.3, 
s2 = –384.37, s3, s4 = –8.45 ± j1.79, s5 = –12.84, and s6 
= –0.1, indicating that  is strictly Hurwitz.
 Accordingly, the resulting control system is 
input-to-state stable, provided that the values of all 
the parameters are sufficiently accurate and constant.  
This theoretical result confirms that all trajectories 
of the error dynamics in Equation (19) converge to 
a neighborhood about the origin [14]. By this, the  
stability of the control system is guaranteed when 
values of all parameters are sufficiently accurate [14]–
[17]. The following experimental results support this. 
 Although all values of the parameters are  
repeatedly verified to be accurate, it is also shown 
in the following that the resulting control system is  
robustly stable to reasonably large parameter uncertainty.  
When compared to the rest of the parameters, note that 
estimating an accurate value for J is usually the most 
difficult. This is because a direct measuring device 
for this is not available. Experiments and numerical 
verification are needed for its estimation as mentioned. 
By definition of , uncertainty of J  
produces uncertainty of elements (3, 3) and (3, 4).  

Now, consider the exaggerated situation in which the 
true values of these elements are within a band of 
±10% about their nominal values of –13.5 and 1088.2 
respectively. That is, 

(3, 3) ∈ [–14.88, –12.17], 
(3, 4) ∈ [979.38, 1197].

 
 These interval uncertainties produce 4 possible 
values of  at their extremes. These are denoted by 

, j = 1,..., 4. Their elements are the same as those 
of the nominal , except that (3, 3), and (3, 4) 
are the extremes of the two intervals. It can be shown  
using a quadratic Lyapunov function  
and LMI (Linear Matrix Inequality) that the  
unperturbed uncertain control system is quadratically 
stable [17]. The MATLAB LMI toolbox gives the 
following positive definite real symmetric matrix P:

 Note that all the eigenvalues of   
are negative real for all j. It can be shown that the 
resulting control system can tolerate additional  
uncertainty. However, robustness is not of primary 
interest to the paper and will not be discussed further.
 Experiments are now conducted to investigate 
how well the auxiliary control can reject smooth and 
abrupt changes in loading torque about the motor shaft.  
Smooth loading variation is due to the weight of link 
3 and wrist assembly. This is attenuated by the use of 
mechanical transmission before entering the motor.  
Abrupt loading torque is introduced directly to the 
motor without attenuation. For this, a pulley of radius 
rm = 14 mm is mounted to the shaft, and a string is  
attached to the pulley. The other end of the string 
is tied to a steel disk of mass m = 0.73 kg, which is 
placed on the floor. The string is set such that the disk 
is pulled up in the air and dropped down to the floor 
at certain points along the reference trajectory θr (t) =  
4 sin(t) revolution of the motor. Figure 4 depicts 
this setup. In all of the experiments, the initial angle 
between the vertical line and the center line of link 3 
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and the wrist is 30 degrees as shown in Figure 4. At  
this configuration, it is imposed that the initial state 
vector qw (0)= 0.  
 The experimental results are shown in Figures 5–7.  
Figure 5 shows the reference trajectory of the motor,  
the actual trajectory with auxiliary control, and the 
actual trajectory without auxiliary control. The two 
actual trajectories track the reference trajectory very 
closely that it is hard to distinguish one from the  
others after approximately 1.5 s. Figure 6 shows  
tracking errors of the motor with and without auxiliary 
control in revolution.  It can be seen that the tracking 
error with auxiliary control is approximately 67% of 
that without auxiliary control for most of the time. 
An exception is when the loading object is dropped 
down to the floor, from which it can be seen that the  
tracking error with auxiliary control is approximately 

the same as that without auxiliary control. The difference  
in responding speed is insignificant.
 Figure 7 shows control input u with and without 
auxiliary control. Both vary similarly, but the former 
fluctuates more rapidly and largely than the latter 
does. For this, the magnitude of fluctuation of the 
control input u with auxiliary control is approximately 
210% of that without auxiliary control. Notice that the  
amplifier limits the magnitude of control input u to 
15 V. The control input reaches the limit briefly in 
the beginning, and when the loading torque changes 
abruptly as mentioned above. The same set of  
experiments is repeated for three rounds, and all the 
results are found to be very consistent. It may be 
possible to decrease tracking error significantly by 
selecting a different performance index for the LQR 
or by tuning the two design parameters of the auxiliary 
control, but there is no need to pursue this because the 
present result is already sufficient to show the benefit 
of the auxiliary control.

6 Discussions

The proposed auxiliary control has several desirable 
properties not found in many existing DC motor  
trajectory control techniques that employ the concept 
of disturbance observer. These include the properties 
that it requires no current feedback from motor coils, 
and its structure is very compact. The control requires 
an estimate of rotor angular acceleration, which is 
obtained by feeding motor shaft angular velocity to 
a low-pass differentiator (LPD). The LPD employed 
here requires only one positive real design parameter  

Figure 5: Reference and actual trajectories of the 
motor, with and without auxiliary control (unit:  
revolution).

Figure 7: Control Input with and without auxiliary 
control (unit: V).

Figure 6: Tracking errors with and without auxiliary 
control (unit: revolution).
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af. This parameter governs its cut-off frequency, which 
should be slightly higher than the frequency of the load 
torque. The strength of disturbance compensation is 
governed by the other positive real design parameter γ. 
Totally, only two design parameters are to be selected.
 Augmenting the proposed auxiliary control to an 
existing PID control amounts to changing the three PID 
feedback gains and adding another feedback gain for 
the output of the above LPD. Because many present-
day controllers are programs running on electronic 
hardware, the auxiliary control can be implemented 
very conveniently by modifying a few lines of the 
programs. Neither hardware cost nor hardware size 
involves in applications of the auxiliary control.
 The proposed auxiliary control results from a 
practical attempt to improve disturbance rejection of 
the system discussed in Section 5 without modifying  
electronic hardware. Preliminary experimental  
investigation on other systems reveals that it could also 
be particularly useful for disturbance rejection of DC 
motor trajectory control systems in which significant 
cogging torque is present. In situations when DC motors  
are employed to drive objects of varying mass  
moment of inertia, an adaptive scheme for adjusting 
the feedback gains to improve disturbance rejection is 
to be investigated.   

7 Conclusions

When an articulated robot arm operates, it is practical  
that a joint motor is subjected to large loading variations  
due to gravity. This variation can occur smoothly or 
abruptly and can increase tracking error significantly. 
In practice, PID controllers are usually employed 
as independent joint motor controllers because of  
numerous successful records and available theoretical 
results. However, it appears that their ability to handle 
fast loading variation is often not very satisfactory.  
This paper proposes a linear auxiliary control that 
specifically handles such loading variation, and  
augments conveniently to the existing PID controllers.  
The auxiliary controller employs the concept of  
disturbance observer to quickly estimate loading 
torque, which cannot be measured directly in practice. 
The auxiliary control does not require feedback from 
the motor coil current. This makes it particularly useful 
for robots that do not have such feedback available. 
DC joint motors are considered here primarily because 

they are relatively economical, and simple to drive. 
By augmenting the auxiliary control to the existing 
PID control, the corresponding linear resultant control  
is obtained. The system matrix of the resulting linear 
control system is explicitly given to facilitate direct 
applications of existing robust stability analysis  
theorems for linear systems. For the cases in which all 
the relevant parameters can be regarded as constants, 
input-to-state stability of the system is guaranteed 
when the system matrix is strictly Hurwitz. Criteria 
for assuring this type of stability in practical situations 
are discussed extensively in the literature and many 
useful results are readily available. Experiments are 
conducted to investigate the disturbance rejection  
capability of the auxiliary control. For this, the auxiliary  
control is augmented to a PID control obtained by  
using LQR theory, and the resultant control is applied 
to a DC joint motor of an articulated robot arm to 
track a reference trajectory. Along the given reference 
trajectory, smooth and abrupt loading variations due 
to gravity are applied to the motor. It appears from 
the experimental results that the auxiliary control can  
improve disturbance rejection of the PID control  
system significantly and consistently.
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