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Abstract
Multimodal medical image fusion (MIF) is the procedure of integrating different images in single into multiple 
imaging modalities for increasing the image quality by preserving a certain feature. Medical image combination  
covered a tremendous count of hot topic areas, involving pattern recognition, image processing, artificial  
intelligence (AI), computer vision (CV), and machine learning (ML). In addition, MIF was more commonly 
applied in clinical for physicians to understand the lesion by the combination of various modalities of medicinal  
image. This article introduces a novel bacterial foraging optimization-based multimodal medical image fusion  
approach (BFO-M3IFA). The presented BFO-M3IFA technique considered two distinct patterns of the  
images as the input of systems and the outcome will be the fused image. Primarily, the BFO-M3IFA technique  
exploits Weiner filtering (WF) technique as an image pre-processing step to get rid of the noise. Besides, discrete  
wavelet transform (DWT) was applied for decomposing the image into distinct subbands. Afterward, the estimated 
coefficients of modality 1 and comprehensive coefficients of modality 2 are integrated and vice versa. At last, 
a fusion rule is generated to fuse the details of two image modalities and the optimal fusion rule parameter is 
chosen with utilize of BFO algorithm. The experimental validation of the BFO-M3IFA system was tested and 
outcomes ensured the improved performance of the BFO-M3IFA system on existing models.

Keywords: Medical image fusion, Imaging modality, Bacterial foraging optimization, Discrete wavelet  
transform, Fusion rule generation
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1 Introduction

Great developments in the healthcare sector have 
resulted in several imaging sensors that improvised 
clinical decision making. The diagnosis cases generally  
have a look at distinct depths and structures of the 
human body, generally unseen by just one modality 
[1], [2]. Therefore, data in several sensors are merged 
altogether for constructing new images which could  
intimate the specialist more via its complementary  
data. Image fusion becomes a highly promising  

research subject in the domain of image analysis 
and computer vision (CV) [3]. It addresses several  
applications, which include infrared, clinical diagnosis,  
and remote sensing. At the same time, the rising 
demand for image fusion in the present healthcare 
systems, for example, the image-guided procedures 
and percutaneous image-guided interventions were 
predominantly because of the progression in a diversity 
of acquisition technology [4], [5]. The primary goal 
is to afford an algorithm, which potentially complies  
with various diagnostic modalities to output 
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one representation that could support specialists  
(i.e.  radiologists, interventionists oncologists,) in their 
decision-making and prognosis process [6]. In spite 
of the idea's simplicity, the fusion method has to face 
several difficulties related, not just to the theoretical 
context, but also to the medical image’s nature, usually 
badly contrasted with ambiguous data [7].
 Medical image fusion (MIF) is of two types’ 
multimodal fusion and single-mode fusion. Owing 
to the limitations of data provided by single-mode 
fusion, several authors started to engage themselves 
in the research work of multimodal fusion [8], [9]. 
During the domain of medical images, imaging  
techniques like Single-Photon Emission Computed  
Tomography (SPECT), Positron Emission Tomography  
(PET), Computed Tomography (CT), and Magnetic 
Resonance Imaging (MRI) have presented doctors 
with information on the structural characteristics of  
human body, soft tissue, etc. [10], [11]. Various  
imaging techniques have diverse features, and distinct 
sensors acquire various image data of similar parts. 
The main objective of the fusion was to attain fusion  
quality, perceived experiences, and superior contrast 
[12]. The fusion outcome must address the following 
conditions one is the fused image must maintain the 
data of source images totally and the second condition 
is the fused image must not generate several synthetic  
data, like artifacts; and finally bad states must be  
ignored, namely misregistration and noise [13], [14]. 
With the arrival of DL boom, a MIF technique on 
the basis of DL originated in 2017. In recent times,  
U-Net network, convolutional neural network (CNN), 
GAN, recurrent neural network (RNN), and other DL 
approaches were extensively employed in medicinal 
image segmentation and registration, while just U-Net 
and CNN networks had been implemented in the MIF. 
CNN refers to a type of NN for image processing, that 
is made up of fully connected layer, convolutional 
layer, and pooling layer [15]. DL structure for MIF 
involves MatConvNet, Caffe, Tensorflow, and much 
more.
 In spite of the ML and DL models that existed 
in the earlier studies, it is still needed to enhance the 
hate speech classification performance. Because of 
the continual deepening of the model, the number of 
parameters of DL models also increases quickly which 
results in model overfitting. At the same time, fusion 
rules have a significant impact on the fusion efficiency 

of the model. Since the trial and error method for  
fusion rule selection is a tedious and erroneous process, 
metaheuristic algorithms can be applied. Therefore, 
in this work, a metaheuristic algorithm is used for 
hyperparameter tuning.
 Wang et al. [16] recommend a multimodal color 
MIF technique on the basis of geometric algebra 
DCT (GA-DCT). The GA-DCT method compiles the 
GA characters that indicate the multi-vector signal  
entirely, which could enhance the fusion image quality 
and ignore a large number of complicated functions 
based on decoding and encoding. Alseelawi et al. 
[17] suggested an effectual policy for multimodal 
MIF related to a hybrid technique of DTCWT and 
NSCT. In [18], a new MIF by utilizing side window  
filtering (SWF) and gradient domain guided filter  
random walk (GDGFRW) in the framelet transform (FT) 
field was provided. Initially, FT can be conducted on 
the original multi-modal source imageries for obtaining  
the residual representations and corresponding  
approximation. Next, a new method-GDGFRW that 
compiles the superiorities of random walks and  
gradient domain guided filtering was built for  
interpreting the estimated sub-bands, whereas the  
residual sub-bands were merged by SWF. 
 Shehanaz et al. [19] projected an optimum 
weighted average fusion (OWAF) for multi-modal MIF 
for improvising the multimodal mapped outcomes. 
In this technique, conventional DWT was utilized to 
decomposition of input multiples modality to several 
sub-groups. The resultant energy bands are weighted 
by making use of optimum weights, gained with the 
help of familiar PSO. In [20], siamese convolutional 
networks can be implemented for creating a weight 
map that combines the pixel movement data from 
more than two multimodalities of medicinal images. 
The MIF procedure was conducted in a multiscale 
manner through medical image pyramids that were 
highly dependable on human visual insight.
 Azam et al. [21] present a novel Patch Adaptive 
Structure Decomposition employing the Multi-Exposure  
Fusion (MEF) approach for enhancing the local contrast  
of laparoscopic images for optimum visualization.  
The spatial linear saturation was executed for enhancing  
image contrast and for adjusting the image saturation.  
In [22], a Multi-resolution Rigid Registration 
(MRR) approach was utilized for multi-modal image  
registration but DWT together with Principal Component  
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Averaging (PCAv) was employed for image fusion. 
In [23], a new weighted parameter adaptive dual  
channel PCNN (WPADCPCNN) related medical 
fusion system was presented in non-sub sampled  
shearlet transform domain for fusing the MRI and 
SPECT images of AIDS dementia difficult and  
Alzheimer's disease patients. 
 Sengupta et al. [24] establish the 3 quantitative 
fusion metrics for assessing the quality of the image 
fusions technique. The presented metrics depend on 
edge data which is attained utilizing fractional order 
differentiation. Edge and orientation strengths can be 
provided as to 3 sigmoidal functions individually to 
estimate the values of 3 normalization weight metrics 
for fused images equivalent to source images. In 
[25], an image fusion system for CT and PET images  
dependent upon AWT and RF learning algorithms were 
presented. Image entropy integrates the helpful data of 
CT and PET images from the presented method. AWT 
takes benefits on mallat WT. RF studies several trees 
for obtaining superior forecast efficacy than any other 
constituent learning approach.
 This article introduces a novel bacterial foraging 
optimization based multimodal medical image fusion 
approach (BFO-M3IFA). The presented BFO-M3IFA 
technique exploits Weiner filtering (WF) technique 
as an image pre-processing step to get rid of the 
noise. Besides, discrete wavelet transform (DWT) 
was executed for decomposing the image into distinct 
subbands. Afterward, the estimate coefficients of  
modality 1 and comprehensive coefficients of modality 
2 were integrated and vice versa. Finally, a fusion rule 
is generated to fuse the details of two image modalities 
and the optimal fusion rule parameter is chosen with 
utilize of BFO algorithm. The experimental validation 
of the BFO-M3IFA system was tested using a set of 
medical images.

• An intelligent BFO-M3IFA technique  
comprising pre-processing, DWT based decomposition,  
and BFO based fusion rule generation is presented. To 
the best of our knowledge, the BFO-M3IFA model has 
never been presented in the literature. 

• A novel BFO algorithm is employed for  
optimal fusion rule generation in the medical image  
fusion process, which helps to attain enhanced  
performance.

• Validate the performance of the BFO-M3IFA 
technique on medical CT and MRI images.

 The rest of the paper is organized as follows. 
Section 2 introduces the methods, section 3 provides 
results and discussion and section 4 concludes the 
paper.

2 Methods

In this study, a novel BFO-M3IFA system was 
introduced to generate fusion of different medical 
imaging modalities. The presented BFO-M3IFA 
technique considered two distinct patterns of the  
images as the input of systems and the outcome 
will be fused images. Primarily, the presented  
BFO-M3IFA technique preprocessed the input  
images by the use of WF technique. Next, the DWT 
decomposition approach is used to decompose the 
image into distinct subbands. Afterward, the estimate  
coefficients of modality 1 and comprehensive  
coefficients of modality 2 were integrated and vice 
versa. Lastly, a fusion rule is generated to fuse the 
details of two image modalities and the optimal  
fusion rule parameter is chosen with utilize of BFO 
algorithm.

2.1  Image pre-processing

Primarily, the BFO-M3IFA technique exploits WF 
technique as an image pre-processing step to get rid of 
the noise. The wiener function executes a WF (a kind 
of linear filter) for image adaptably, tailoring itself to 
local image difference [26]. When the difference was 
huge, WF acts little smoothing. When it can be smaller, 
Wiener executes further smoothing. This technique  
frequently takes optimum outcomes than linear  
filters. The adaptive filtering was further selected than 
equivalent linear filtering, preserved edges, and other 
higher frequency part of images. Besides, there are no 
designed tasks; the wiener2 function manages every 
primary computation and executes the filter to input 
images. Wiener2, but does need further computation 
time than a linear filter. 
 The Fourier domain of WF is G(u,v) =  
H × (u,v)/[|H(u,v)|2 Ps(u,v) + Pn(u,v)]. Whereas  
H × (u,v) implies the complex conjugate of degradation 
function, Pn(u,v) denotes the power spectral density of 
noises, Ps(u,v) signifies the power spectral density of 
non-degraded images H(u,v) represents the degradation  
function.
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2.2  Image decomposition

At this stage, the DWT is applied to decompose the 
image into distinct subbands. Following the process of 
enhancement, the input image is decomposed through 
DWT. The 2D-DWT generates the four subbands, such 
as LL HH, LH, and HL images [27]. At this point, 
the HH images have the diagonal detail coefficients 
HL images comprise the vertical detail coefficient, 
LL images include an approximate coefficient, and 
LH images involve the horizontal detail coefficient. 
As a result, the LL image is regarded as approximate  
coefficients, and LL, LH, and HL images are assumed 
to be co-efficient. The wavelet decomposition outcome 
of I1 is shown below. The detailed and approximation  
coefficient of I1 are calculated using the below  
Equations (1)–(4),

 (1)

 (2)

 (3)

 (4)

 The wavelet decomposition output of I2 images  
is shown below. The detailed and approximation  
coefficient of I2 are calculated using the below  
Equations (5)–(8), 

 (5)

 (6)

 (7)

 (8)

2.3  Primary fusion

Afterward the image decomposition, the CT and MRI 
images are merged. At this point, detail coefficients 
of I2 (CT) and approximate coefficient of input image  
I1 (MRI) are integrated for obtaining merged images   

 using the below Equation (9),

 (9)

When i = {H, V, D}, gives horizontal, vertical, 
and diagonal particulars of input. In the same way,  
approximation coefficient of I2 (CT) and detailed  
coefficient of input image I1 (MRI) are integrated for 
attaining  using the below Equation (10),

 (10)

2.4  Final fusion

At last, a fusion rule is generated to fuse the details 
of two image modalities and the optimal fusion rule 
parameter is chosen by the use of BFO algorithm. In 
the last phase,  and  images are combined 
by utilizing fusion rule that is shown in the following. 

 (11)

 Equation (11), W1 and W2 indicates the weight 
value.  To improve the fusion quantity, the weight value 
is chosen in an optimum way. 
 The initiation of the conventional BFO approach 
comprises two major contents: bacterial and solution 
space initiation [28]. The position of i-th bacterium 
in the optimization is represented as b Pi(j,k,l), was 
corresponding to the optimal parameter of solutions, 
that is Pi(j,k,l) = [m1, m2,…, mD]. Figure 1 depicts the 
steps involved in BFO technique.
 As a result, the fitness of i-th bacterium in the 
optimization is characterized as Ji(j,k,l), is determined 
by the function of bacterium position:

 (12)

 From Equation (12), the lower value of function  
indicates higher fitness. i signifies i-th bacterium, 
whereby j, k, and l are related to the centralized  
process of the BFO technique: reproduction, dispersal, 



5

G. A. Muthulingam and V. S. Parvathy, “A Novel Bacterial Foraging Optimization Based Multimodal Medical Image Fusion Approach.”

Applied Science and Engineering Progress, Vol. 16, No. 4, 2023, 6794

elimination, and chemotaxis.

2.4.1 Chemotaxis

In this phase, flipping movement and massive quantity  
of swimming are considered. In j-th chemotaxis  
process, the motion of i-th bacterium is demonstrated 
in the below Equation (13) as follows:

 (13)

 Each component of (i) is arithmetical value 
that lies within [–1,1], whereby the initiation is set to  
arbitrary number. When the i-th bacterium identifies 
a higher fitness position as a promising atmosphere in 
j-th chemotaxis, it undergoes moves in a comparable 
direction dependent on the time. Instead (i) chooses 
an arbitrary direction.

2.4.2 Swarming

The bacteria are assumed that repulsion and attractive. 
The numerical relationship is defined as follows:

 (14)

 In Equation (14), datt indicates depth at the  
attraction material was released using i-th bacterium, 
while ωatt denotes the width of attracted material. 
Likewise, 2 bacteria could not be in precisely the  
comparable site, the repulsion is adopted as hrepand 
ωrep. Later, in the swarming process, the fitness of i-th  
bacterium was shown in Equation (15) as follows:

 (15)

2.4.3 Reproduction

The bacteria replicate when they accomplish the  
finest atmosphere; if not, they die. As a result, of the 
chemotaxis and swarming process, the fitness of whole 
bacteria is calculated using the Equation (16):

 (16)

 Half of bacteria in state  are preferred 
to survive, where remaining will die. 

2.4.4 Elimination and dispersal

Later reproduction, bacterium was distributed by 
possibility of Ped, but the total amount of bacteria  
remains comparable. Once a bacterium was detached, 
it can be distributed arbitrarily to a novel site.

r = random [0,1];

 (17)

 As shown in Equation (17), removal performs 
when ri < Ped.The unique position of i-th bacterium Pi 
was substituted with  = (  Accordingly, 
an m variable is upgraded to  parameter.

3 Results and Discussion

The proposed multi-focus image fusion is implemented  
in the platform MATLAB R2015a. This section  
inspects the experimental validation of the BFO-M3IFA  
model using a medical image dataset from (http://www.
med.harvard.edu/aanlib/). The dataset holds medical 
CT and MRI images. Some sample images are depicted 

Figure 1: Steps involved in BFO.

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Initialize Bacteria Swarm

Initialize Chemotaxis

Evaluate Fitness

Initialize Reproduction

Elimination Dispersal

Optimize Values
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in Figure 2. Each input image in the dataset has the 
same size 512 × 512 with 256 grayscale levels. Figure 3  
depicts a visualization of sample fusion output.
 Table 1 and Figure 4 offer a comprehensive 
entropy examination of the BFO-M3IFA system with 
other approaches under distinct sample images [29]. 
The experimental values exposed that the BFO-M3IFA 
approach has accomplished enhanced performance 
with superior values of entropy. For sample, with 
sample 1, the BFO-M3IFA method has offered higher 
entropy of 7.0819, whereas the DWT-BCSA, DWT-
CSA, and DWT-GA techniques have obtained lower 
entropy of 6.7649, 6.3379, and 6.1068 respectively. 
Followed by, for sample 3, the BFO-M3IFA method 
has rendered higher entropy of 6.5919 whereas the 
DWT-BCSA, DWT-CSA, and DWT-GA approaches 
have gained lower entropy of 6.2489, 5.6469, and 

5.1188 correspondingly. In addition, with sample 5, the 
BFO-M3IFA algorithm has provided higher entropy 
of 7.0743 whereas the DWT-BCSA, DWT-CSA, and 
DWT-GA methods have reached lower entropy of 
6.7513, 6.2219, and 5.6028, correspondingly.

Table 1: Entropy analysis of BFO-M3IFA approach 
with existing methods distinct sample images

Entropy(bits/pixel)
No. of 

Sample 
Images

BFO-
M3IFA

DWT-
BCSA

DWT-
CSA

DWT-
GA

Sample 1 7.0819 6.7649 6.3379 6.1068
Sample 2 6.8642 6.4812 6.1199 5.6547
Sample 3 6.5919 6.2489 5.6469 5.1188
Sample 4 7.3941 7.0631 6.3405 5.8113
Sample 5 7.0743 6.7513 6.2219 5.6028

 Table 2 and Figure 5 present a detailed SSIM 
investigation of the BFO-M3IFA method with 
other techniques under distinct sample images. The  
experimental values inferred that the BFO-M3IFA  
approach has established improvised performance 
with higher values of SSIM. For sample, for sample 1, 
the BFO-M3IFA method has rendered a higher SSIM 
of 92.38%, whereas the DWT-BCSA, DWT-CSA, 
and DWT-GA methodologies have acquired lower 
SSIM of 90.37, 85.50, and 81.18% correspondingly.  
Subsequently, with sample 3, the BFO-M3IFA method 
has offered higher SSIM of 81.63%, whereas the  
DWT-BCSA, DWT-CSA, and DWT-GA approaches 
have obtained lower SSIM of 79.58, 75.62, and 
71.66% correspondingly. Moreover, with sample 5, the  
BFO-M3IFA model has presented higher SSIM of 

Figure 2: Sample images (a) MRI Image (b) CT Image 
(c) Fused Image.

Figure 3: Sample fused output.

(a) (b)

(c)

 (b) CT (c) Fused image(a) MRI

Figure 4: Entropy analysis of BFO-M3IFA approach 
with distinct sample images.
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90.10% whereas the DWT-BCSA, DWT-CSA, and 
DWT-GA techniques have attained lower SSIM of 
87.58, 80.40, and 75.05% correspondingly.

Table 2: SSIM analysis of BFO-M3IFA approach with 
existing methods distinct sample images

SSIM (%)
No. of 

Sample 
Images

BFO-
M3IFA

DWT-
BCSA

DWT-
CSA

DWT-
GA

Sample 1 92.38 90.37 85.50 81.18
Sample 2 86.15 83.69 79.28 75.36
Sample 3 81.63 79.58 75.62 71.66
Sample 4 86.62 83.74 78.32 73.53
Sample 5 90.10 87.58 80.40 75.05

 Table 3 and Figure 6 offer a detailed fusion 
investigation of the BFO-M3IFA methodology with 
other models under distinct sample images. The  
experimental values represented by the BFO-M3IFA 
approach have accomplished improvised performance 
with increased values of feature fusion. For instance, 
with sample 1, the BFO-M3IFA method has provided 
higher feature fusion of 6.5829, whereas the DWT-
BCSA, DWT-CSA, and DWT-GA methods have 
gained lower feature fusion of 6.3009, 5.3557, and 
4.3142 correspondingly.  Next, with sample 3, the 
BFO-M3IFA technique has rendered higher feature  
fusion of 6.3366, whereas the DWT-BCSA, DWT-CSA,  
and DWT-GA approaches have reached lower feature 
fusion of 6.0046, 4.4798, and 4.3017, respectively. 
Moreover, with sample 5, the BFO-M3IFA method has 
presented higher feature fusion of 5.8507, whereas the 
DWT-BCSA, DWT-CSA, and DWT-GA models have 

obtained lower feature fusion of 5.4897, 5.3857, and 
4.1706, correspondingly.

Table 3: Feature fusion analysis of BFO-M3IFA  
approach with existing methods distinct sample images

Feature Fusion
No. of 

Sample 
Images

BFO-
M3IFA

DWT-
BCSA

DWT-
CSA

DWT-
GA

Sample 1 6.5829 6.3009 5.3557 4.3142
Sample 2 6.7668 6.4068 5.9320 4.7871
Sample 3 6.3366 6.0046 4.4798 4.3017
Sample 4 6.1418 5.8748 5.3253 5.2419
Sample 5 5.8507 5.4897 5.3857 4.1706

 From the detailed results and discussion, it is 
assumed that the BFO-M3IFA model has shown  
enhanced performance over all the other models.

4 Conclusions

In this study, a novel BFO-M3IFA system was  
introduced for generating fusion of different medical  
imaging modalities. The presented BFO-M3IFA  
technique considered two distinct patterns of the  
images as the input of systems and the outcome will 
be the fused image. The BFO-M3IFA technique  
encompasses a series of processes namely WF  
preprocessing, DWT decomposition, coefficient  
estimation, fusion rule generation, and BFO based 
fusion rule optimization. The experimental validation  
of the BFO-M3IFA system was tested utilizing a set 
of medical images and the outcomes ensured the 
improved performance of the BFO-M3IFA system on 

Figure 5: SSIM analysis of BFO-M3IFA approach 
with distinct sample images.

Figure 6: Feature fusion analysis of BFO-M3IFA  
approach with distinct sample images.
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existing models. In future, the presented model can be 
extended to the design of deep learning based medical 
image classification tools. In future, multiple other 
medical modalities can be included in fusion process.
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