
 

AIJSTPME (2011) 4(3): 83-94 

 

 

83 

 

 

Defining acceptance criteria on parts in order to maximise the use of functional 

condition domain 
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Abstract 

Designers have at one’s disposal several methods to calculate tolerances within dimension’s chains and can 

specify several statistical indicators. The worst case method can conduct to over quality, quadratic often 

conducts to insufficient quality. Efficiency of other candidate methods are studied below and a new one is 

proposed, with the target to guarantee the functional condition at an acceptable level and allow the largest 

variation area on the components. 

A simple solution consists in assigning to the parts the usual worst case tolerance range, and in verifying it 

regarding the Cpktarget / √(lenght of dimension chain) 
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1 Introduction

Tolerance analysis and statistical dimensioning are 

implemented inside generalist tools or often custom 

tools. Designers use them as “black box”, but in 

some cases have at one’s disposal several methods to 

calculate tolerances within dimension’s chains and 

can specify several statistical indicators for 

verification. 

They become responsible for finding the compromise 

between “severity” and “risk”, with impacts on cost 

and drawbacks on quality,  in a context where the 

statistical hypothesis are clear only for experts. 

 Worst case method gives the smallest 

tolerance interval on the components, in an 

industrial production it conducts often to 

over quality requirements. 

 Quadratic method conducts to quality issues 

when some prerequisites are forgotten. 

 Designers question about alternative 

methods: semi-quadratic, probabilistic, and 

a new one: inertial [1] 

Designers are rarely specialists in statistics and 

expect guidance to choose the model appropriate to 

the situation. 

The targets of this study are: 

 To present some of the current tolerancing 

models
1
 with their efficiency characteristics 

 To propose a guideline to define the 

tolerance area suiting efficiency targets [2] 

 To propose a practical method with target 

indicators. 

 

2 Methods used for the study 

2.1 Reminder: basic rules 

Let us consider a dimension chain in an assembly on 

which a functional condition (FC) is defined. It is a 

characteristic expressed as a function of “n” 

elementary characteristics: FC=f(X1,X2,..Xn) 

If the chain is linear, FC=(iXi) in which i are -1 

or +1. 

On the links (Xi), random variables, defining this 

chain, it is well known that: 

- deviations from the nominal add together, 

- variances add together, 

as long they are independent.  

Normality is not required. 

                                                           
1 Probabilistic is kept out of scope (refer to appendix) 
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Vijay Srinivasan [3] proposed the following 

representation where  is the deviation of each link 

from the nominal and 
2
 their variance.  

=E(Xi-VC  in which E(Xiis the mean and VC the 

centred nominal value for the Xi characteristic. [5] 


2
=E{[Xi-E(Xi)]²}    [5] 





links

Resulting functional condition

 

Figure 1: Srinivasan domain 

As direct consequence, the deviation and the variance 

of the resulting functional condition are obtained by 

the sum of all link vectors. 

 

2.2 Statistical tolerance zone (STZ) 

In the following step we have to define the surface 

area corresponding to acceptance zone. Let’s start 

from the functional requirement.  

The functional condition (FC) is usually submitted to 

one or 2 functional limits (USL, LSL); if we assume 

a direct correlation to the service functions, the 

acceptance criteria is then a maximum non 

conforming rate (NCR). 

 If we neglect the fact that we can have in the same 

time a both sided non conforming rate, and with a 

strong assumption regarding the normality of the 

distribution, the acceptance criteria is simplified and 

can be transformed in Cpk. 

Cpk=min (USL-;-LSL)/3 

We give up the Srinivasan representation (

) and 

use a () coordinate system. [PA Adragna][4]  

On figure 2,  

 TR is the Tolerance range defined by 

the functional limits=USL-LSL  

 k is a ratio related to the Cpk target  

k= 3.Cpk target 

TR/2

TR/k





 
Figure 2: statistical tolerance zone (FC) In the 

following text, X axis will be called “deviation” axis 

and Y “variance” axis
2
. 

 

2.3 Breaking down the STZ on the links 

(parameters)
3
 

The core of the problem is here: from STZ of the 

functional condition, define the appropriate STZ on 

the links. All batches () will combine according 

2.1. 

The French standard XP E04-008 [5] has published 

rules for: 

 Arithmetical (worst case) 

 Quadratic 

 Semi-quadratic 

 Inertial 

Arithmetical, quadratic, semi-quadratic consist in 

defining a Tolerance Range on each elementary 

characteristic.  

Inertial defines a Tolerance on the Inertia.  As soon 

as a TR is defined, the STZ is adapted according to 

the standard, or for the moment, according to the 

habits. 

 

2.4 Simulation hypothesis 

We have done simulations for a 8 parameters 

dimension chain.  

n=8 

To simplify, links are identical but independent. 

The FC Tolerance range (FCTR) is +/- 0.5 mm.  

An hypothetical quality requirement 32 ppm on the 

FC is converted to a Cpk 1.33. 

Cpk FC=1.33 

                                                           
2
 We do not call it “standard deviation” axis as we should, 

in order to avoid confusion with X axis 
3
 In the next chapters, Xi elementary characteristics will be 

called “parameters” or “links” according to the context 

(geometrical or mathematic) 
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 The mean deviation inside the STZ is 

assumed equiprobable. 

 The standard deviation is the maximum 

allowed by the STZ. 

 The resultant is calculated according 2.1 

 1000 run have been done for each 

parameter. 

 Result is displayed, and we calculated the 

failure rate. 

Notice that the simulations are pessimistic, because 

in an assembly is not usual to have all parameters at 

their limit (Cpk or else) together. 

 

3 Application on different tolerancing methods 

3.1 Arithmetical 

Although statistical acceptation is not necessary 

(attribute or GO-NOGO is sufficient) it is more 

comfortable to produce statistics in order to avoid   

100% inspection or an inspection based on the 

binomial law.  In that case, a STZ derived from Cpk 

criteria is the most used.  For a 8 links chain,  

TR parameter is calculated as follow: 

TRx=+/-0.0625=FCTR/8 

Cpk target: 1.00 (not justified) 

 
Figure 3: parameter STZ for arithmetical 

 

 

 

Figure 4: FC STZ arithmetical simulation result 

Remarks: although parameters are sampled on the 

limit of their STZ (on the triangle) we get a point 

cloud; the reason is that the deviations  can be 

compensated together. If we sample only on the same 

side on the parameter STZ, we get a curve inside the 

FC STZ, result of the Minkowski sum. [2]. In the 

other hand, if we sample inside the full parameter 

STZ, we will get points closer from the horizontal 

axis. 

Findings: 

 FC is satisfied, 

 The STZ is not fully used, especially in 

variance. 

This well known feature leads to quadratic 

calculation. 

  

3.2 Quadratic 

A Gaussian hypothesis is the usual unique 

assumption. 

TRx=FCTR/√(n)/cpkFC=+/-0.1326 

Usually, we use only the Cpk for acceptance criteria. 

With a Cpk target=1.00 (consistent with the 

definition of TRx) we get: 
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Figure 5: parameter STZ for quadratic 

 

Figure 6: FC STZ quadratic simulation result 

Findings: 

 FC is not satisfied, especially in deviation. 

The mean of FC is out of the range in 1.2% of cases 

(meaning more than 50% of NCR) and Cpk is not 

compliant in 35% cases. This well known feature 

leads to evaluate semi-quadratic or inertial 

calculation. NF X 04-008 recommends limiting the 

parameter deviation to 1 sigma (refer to appendix). 

 

3.3 Semi-quadratic 

The parameters have a range in which the mean can 

vary freely, and the remaining part of TR allows a 

Gaussian variation [6]. The tolerance on the FC 

consists in the arithmetical sum of the mean’s ranges, 

and a statistical part calculated by quadratic way.   

Let us take a mean range of 60% inside TRx. 

 

Remaining 40% correspond to 6 x 

Reverse calculation leads to TRx=+/-0.07926 

The parameter STZ should be defined by a rectangle, 

(width equal to TRx*0.6) and constant height, 

because we assume in the calculation a constant Cp 

whatever the value of the mean.  Let us look to a STZ 

defined by a limited mean deviation, and a Cpk: 

 

Figure 7 : parameter STZ for semi-quadratic 

 

Figure 8 : FC STZ simulation for semi-quadratic 

Findings: 

 FC is satisfied, 

 The STZ is not fully used, in deviation axis 

as in variance. 

With the above 0.6 setting, we may observe that Cp 

requirement is not useful to ensure the quality. 

 

3.4 Inertial (regular) 

The calculation of the inertia tolerance on the 

parameters is consistent with the quadratic method:  

The change is related with the STZ, and consists in 

limiting the deviation at 1 sigma: 
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Figure 9 :  parameter STZ for inertial 

Remark: Cpm requirement on quadratic calculated 

TRx conducts to same STZ. 

 

Figure 10: FC STZ simulation for Inertial 

Findings: 

 FC is not fully satisfied. 

24% of Cpk are not compliant. 

Remarks: non compliant points are not very far from 

the limit, and come from simulations done with all 

Cpk at the limit. The failures do not come from the 

deviation, that is mastered, but from the variance. 

 

3.5 Inertial, “corrected” 

NF E 04 008 gives a solution to satisfy fully the FC, 

according the Cpk FC, through an adjustment related 

to n (length of the chain).  

As result, the parameter STZ is slightly reduced: 

 

Figure 11: parameter STZ for inertial “corrected” 

 

 

 

 

 

Figure 12 : FC STZ simulation for Inertial 

“corrected” 

Findings: 

 FC is successfully satisfied, 

 The STZ is not fully used, in deviation axis. 

 

3.6 Simulations with n =4  

With a shorter dimension chain, findings are 

identical. 

 

3.7 Conclusion for the simulations 

According the above models: 

 Either the Functional condition is not 

satisfied, 

 Either the Statistical Tolerance Zone of the 

functional condition is not fully used. 

Is it impossible to increase the efficiency, while 

controlling the risks on the FC ? 
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4 Synthesis of the STZ for parameters 

Let us superpose the parameter’s STZ of the previous 

methods: 

 

Figure 13: parameter STZ comparisons for 8 links 

 

Figure 14 : parameter STZ comparisons for 4 links 

Reminders from FC STZ simulations: 

 Quadratic lets the FC deviate too much, 

 Inertia corrected limits too much the 

deviation, 

 Arithmetical limits too much the variance, 

 Semi quadratic limits both. 

 

5 Evidences: 

 The maximum possible variance is defined 

by quadratic and inertia (regular) methods, 

as soon there is no deviation, 

 The maximum deviation is given by 

arithmetical calculation…as soon there is no 

variance. 

 

This defines two remarkable points in the STZ 

domain: 

 

Figure 15 :  parameter STZ remarkable points  

(8 links) 

Questions:  

What is the ideal curve going through these points? 

 The right way is to break down the FC STZ 

through a “Minkowski division”
4
. 

  Simulation can produce approximations, 

with the target to satisfy the FC and to “fill” 

the FC STZ as much as possible.  

 

6 Searching the ideal STZ 

6.1 Drafting Cpk STZ 

The first test consists in drafting a straight line, i.e. a 

Cpk domain: 

 

Figure 16:  parameter STZ low cpk (8 links) 

                                                           
4
 Indeed the Functional condition STZ is obtained by 

“Minkowki sum” of all parameters STZ [2]. It could be 

possible to search which shape must have the parameter 

STZ to give the expected FC STZ for dimension “n” 
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Cpk=1/√(n) here n=8, so Cpk target=0.47 

 Please notice that the Tolerance range is the 

arithmetical one. 

 Constraint: the tolerance range in CAD is 

not sufficient to define the verification 

procedure, we need to associate the Cpk 

target value. 

 

Figure 17: FC STZ simulation for Low Cpk (8 links) 

Findings: 

 FC is not fully satisfied, 

 The STZ is not fully used, in deviation . 

Cpk non conform rate:  3.7% 

Average ppm rate:  7.1 ppm 

Average ppm rate of non conform Cpk:  170ppm 

Maximum ppm rate:  968 ppm 

MCSV2
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Figure 18: FC STZ simulation for Low Cpk (4 links) 

 

Findings: 

 FC is not fully satisfied, 

 The STZ is almost fully used. 

Cpk non conform rate:  18% 

Average ppm rate:  69 ppm 

Average ppm rate of non conform Cpk:  350 ppm 

Maximum ppm rate:  6500 ppm 

Remarks: not conform points are close to the limit, 

and come from simulations done with all Cpk at the 

limit. 

 

6.2 Optimizing the curve 

6.2.1  Aims 

We have 2 aims: 

- delete the external points to the domain; they 

come from highest variance when the deviation is 

important, 

- expand the deviation possibility when the chain is 

long, to improve FC STZ efficiency. 

The first aim can be favoured through a “variable 

Cpk”, i.e. low Cpk when deviation is low, high Cpk 

when deviation is high.  

The second one can be reached through a power 

function (n
p
) attached to TRx calculation, in order to 

increase it when n is high (i.e. making an acceptable 

compromise between /n and /√(n)). 

6.2.2  Improving the FC quality 

 

Figure 19:  variable Cpk STZ (8 links) 
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Figure 20: FC STZ simulated (8 links) 

Settings: Cpk from 0.47 to 2 

Findings: 

 FC is satisfied, 

 The STZ is not fully used. 

With 4 links we reach FC satisfaction with Cpk from 

0.666 to 3, with a good STZ filling: 

acceptation au Cpk-CC X2

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

-0.15 -0.1 -0.05 0 0.05 0.1 0.15

Série1

 

Figure 21: variable Cpk STZ (4links) 

 

Figure 22 : FC STZ simulated (4 links), 200 run 

 

6.2.3  Improving the STZ efficiency: 

We expand ITx with a power ratio: 0.06 

 

Figure 23 : variable Cpk STZ expanded 

TRx is increased to +/-0.708; Cpk varies from 0.47 to 

3, meaning a more concave curve. 

FC quality is quite good: 

 

Figure 24: FC STZ simulated (8 links) 

 

6.3 Efficiency table 

The indicator chosen is the half-surface of the 

parameter STZ.  
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Figure 25:  parameter STZ efficiency (4 links) 

Arithmetical: 0.00260 

Inertial regular: 0.00307 

Inertial corrected: 0.00245 

Semi-quadratic (0.6): 0.00291 

“Low cpk” not optimized:  0.00390 

“Low Cpk” variable:  #0.00263 

 

 

 

 

 

Figure 26: parameter STZ efficiency (8 links) 

Findings: 

 “Low Cpk variable” has poor efficiency 

results close from inertial corrected or semi-

quadratic or even arithmetical for n low, 

 “Low Cpk” is always more efficient than 

inertial corrected, but with a risk especially 

for n low, 

 Deleting the external points is costly… 

 Each tolerancing model has a trade-off 

between deviation and variance, regarding 

to the STZ areas that the model authorises or 

not.  

 It is the only interest of TRx expansion, 

because the surface does not seem bigger, so 

what is saved in deviation is lost somewhere 

in variance. 

 

7 Conclusions 

We propose the following guide line: 

1. If your quality requirement is not “zero non 

conforming Cpk” on the assembly
5
, you can 

choose “inertial regular” or “Low Cpk” 

(or...Quadratic!) 

2. Final choice is related to the deviation 

characteristics of your process producing the 

parts: for example if the drift is probable, 

rather choose “Low Cpk” (or Arithmetic) 

than Inertia (or Semi-quadratic). In other 

words, designer has to be supported by 

industrials (advanced manufacturing, 

quality, and suppliers) to set the model 

appropriated to the probable defaults. 

 

remark: never forget that the above STZ models 

are “acceptation” models. They are supposed to 

act as filters on “production” models. The 

prerequisite before statistical tolerancing is to 

know these ones…The expected distribution 

law, combined with above acceptance law, will 

allow you relevant simulation and then NCR 

controlling. 

For these reason, we do not think that highest 

priority is to go deeper into the statistics. 

 

                                                           
5
 Indeed the probability to get all Cpk or Inertia at the 

worst case value is very low. However it is advised to put 

this risk under control at least during components and 

process qualification, and if necessary by supply quality 

management. 
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Appendix 

Probabilistic tolerancing 

The calculation of the FCTR is done with assumption 

of an equiprobable distribution on the parameters. 

We can obtain FCTR, by convolution (by digital 

processing) or with Gaussian assumption when n is 

high.(indeed sigmax=TRx/√ (12)). 

With this assumption we get TRx= 0.0765 for n=8 

As for arithmetic, we have to define an acceptance 

rule, that will usually be Cpk=1.00 

acceptation au Cpk X2

0

0,005

0,01

0,015

0,02

0,025

0,03

-0,1 -0,05 0 0,05 0,1

Série1

 

Figure 27: equiprobable STZ (8 links) 

toléranct quadratique
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Figure 28: equiprobable FCSTZ (8 links) 

FC is satisfied. It is possible to decrease slightly the 

Cpk target in order to allow more variance. 

Quadratic tolerancing with XP E 04 008 acceptance 

rule 

TRx unchanged, the deviation is limited to one sigma 

acceptation au Cpk-CC X2
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Figure 29: quadratic XP STZ (8 links) 

semi quad cpk
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Figure 30 : FC STZ simulation for quadratic XP 

Deviation is strongly limited, variance is still high 

Synthesis with probabilistic and quadratic-XP: 
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Figure 31 : FC STZ simulation yellow&blue  

 

For n=8 the authorized deviation is quite identical 

with quadratic according XP acceptance rule or semi-

quadratic, but efficiency& risk compromize is better 

with “low cpk” method. 
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If we attach importance to deviation, probabilistic 

method is interesting. 

A compromise “low cpk” - “probabilistic” is 

interesting to investigate: 

Trial with equiprobable TR; cpk from .7 to 2 

For 8 links: 

 
Figure 32: optimized equiprobable FTZ 

 
Figure 33 : FC STZ simulation for optimized equip. 

Non conforming FC: 0.025 

Synthesis for 8 links with new models: 
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Figure 34: parameter STZ efficiency systhesis (8) 

Optimized equiprobable in purple: we gain deviation 

 but loose spread compared to “low cpk”. For 4 links: 

 

Figure 35: parameter STZ efficiency synthesis (4) 

In yellow, “optimised equiprobable” Very close  

from previous low cpk model optimised. 
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