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Abstract
This research presents precise formulas to calculate the average time to signal (ATS) of the moving average 
control chart (MA chart) for detecting changes in the autocorrelation of count data when the process has zero 
inflation and zero deflation. Thus, a zero-modified geometric integer value autoregressive order 1 (ZMGINAR 
(1)) process is a suitable geometrical alternative for autocorrelated count data with an enormous (or shortfall)  
number of zeros. The average time to signal is a traditional control chart performance; the mean of the  
observations taken before a process signal that it is beyond the control limit. The numerical results demonstrate 
the effectiveness of the control limit in detecting changes in the effect of inflation and deflation of zeros. The 
usefulness of a control chart in detecting variations in the model of the process can be illustrated by the actual 
data sample of count data.

Keywords: Average time to signal, INAR(1) process, Integer-valued time series, MA chart, Zero-modified 
geometric distribution
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1 Introduction

In statistical process control (SPC), there are many 
sample data in the form of count data. Count time 
series consist of zero inflation and zero deflation, 
and such states can occur in economics, industrial, 
business, and other data fields. Over time, there have 
been many studies to develop models suitable for zero 
inflation and friction data. The most suitable model for 
this data type is the geometric INAR model with zero  
modification geometry as the increment distribution 
called the ZMGINAR(1) model proposed by Berreto-
Souza [1]. 
 In the quality control process, there may be 
a change in the mean or variance of the data. The 
most popular statistical tool to detect changes is the 

control chart, which is used to detect changes in data 
parameters. For instance, the Shewhart chart [2] 
can effectively detect large process variations as it  
considers variations in current data such as c, u, p, 
and np charts. The c chart monitors the number of 
defects in a sample, while the u chart monitors the 
average number per sample unit. The c chart is similar 
to the np chart except that it counts defects instead of  
defectives. A p chart monitors the proportion of  
defectives in a lot or batch and counts the number of 
non-conforming units in a lot or batch. The np chart 
monitors the number of defects. However, both should 
look the same for the same data set with constant 
sample sizes. Subsequently, a control chart that detects 
small process changes was developed, namely the 
moving average (MA) control [3]. The usage condition 
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is to consider different moving averages (k) that can 
detect small changes.
 The efficiency of the control chart can be determined  
from the average time to signal (ATS), divided into 
two categories: when the process is in control and 
when it is out of control [4]. When the process is in 
control, the above values should be high in normal 
circumstances, and on the contrary, this value should 
be minimal when the process is out of control. In the 
past, there have been many analytical methods for 
calculating ATS. The most widely used and accurate 
method is Monte Carlo (MC) simulation. However, 
this method has limitations in using large amounts of 
observations and time.
 Furthermore, many methods are presented. The 
Markov chain approach (MCA) is a popular and  
effective technique applying the definition of matrix 
inversion to the Markov chain principles. There is 
no theoretical effect on accuracy, but the results are  
compared with MC [5]. In addition, the integral equation  
(IE) is the modern method using basic mathematical  
formulas and the central limit theorem, which is 
another method that can accurately measure the  
performance of a control chart [6]. The methods 
described above are suitable for determining the  
efficiency of control charts, but they are not suitable for 
all control charts in optimizing as the process changes.
 Considerable research has examined the  
effectiveness of the control chart for autocorrelation 
detection when the process has zero-increasing or  
decreasing counting time series. Rakitzis et al., [7]–[9] 
studied the efficiency of the CUSUM chart for one-sided  
and two-sided cases using the MC method to determine 
the ATS of zeros processes. Saowanit [10] proposed 
determining the average run length of the CUSUM 
chart by the MCA method based on Poisson counting 
data with inflated zero values. Phanyam [11] analyzed 
a formula to determine the EWMA chart's performance 
with the IE method for the autocorrelated processes. 
Areepong and Sukparungsee [12] proposed a method 
for calculating the ATS using the IE principle of the 
EWMA chart and compared the efficiency of the 
obtained results with the MC methods. In addition, 
Chananet et al., [13] use MC to detect process variation. 
 Additionally, many studies have been conducted 
on calculating control chart performance measures 
to obtain accurate numerical results. Areepong and 
Sukparungsee [14] analyzed the average run length 

formula of the MA chart to be used for the process 
with inflated zero values. Efficiency analysis of 
the MA chart found that as the zero change process  
increases, the length of the MA chart used for detecting  
the change decreases. Chananet et al., [15] studied 
the estimation formula for the performance measure 
of MA charts with zero data of the negative binomial 
distribution. The resulting formula is easy to apply 
to data with zero. Phantu et al., [16] studied explicit  
expressions to calculate the average run length  
values for the MA chart using Poisson integer-valued  
autoregressive model. To make it more convenient 
to find the efficiency of the MA chart. Sukparungsee  
et al., [17] propose an exact formula to determine the 
average run length of the MA chart for an integer-
valued moving average of order 1 (PoiINMA(1)) and 
compare the accuracy with the MC method. As a result, 
the generated formula is as accurate as the MC method 
but takes less time to process. Areepong [18] finds a 
formula for calculating the performance measure of 
the MA chart to determine the process mean of the 
first-order integer-valued autoregressive with a zero-
inflated Poisson model (ZIPNAR(1)). Raweesawat  
and Sukparungsee [19] proposed an accurate formula 
to estimate the performance of the DMA chart by 
using a double-moving average of the hyper zero 
models. So it can be used more efficiently. Wiwek  
et al., [20] proposed applying exact formulas of  
average time to out-of-control signals for a compound  
control chart. The research studies above have 
shown that determining the efficiency of control chat  
using formulas is accurate and consistent with the 
MC method. It is also a popular method for moving 
average control charts because it is convenient, fast, 
and easy to use.
 The purpose of this paper is to study the precise 
formula of the MA chart when the data is observed as 
a zero-modified geometric integer value autoregressive  
order 1 (ZMGINAR (1)) model and to compare the 
performance of the MA chart with the Shewhart 
chart to detect changes in the mean parameter of the  
process with inflation or deflation of zero. The paper is 
organized into the section as follows. The first section 
is the introduction. The second section describes the 
zero-modified geometric integer value autoregressive 
order 1 (ZMGINAR (1)) model, while the third section 
presents the control chart for ZMGINAR (1) model. 
Next, the fourth section analysis the precise formula 
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of the MA chart. Later, section fifth illustrates the 
results of the performance of the control chart and 
the optimization of the parameters of the MA chart, 
including using a control chart of data with inflation 
and deflation of zeros. Finally, the conclusion of this 
research is provided in part six.

2 The first order Zero-Modified Geometric First-
Order Integer Valued Autoregressive Process

This section introduces a zero-modified geometric 
integer-valued autoregressive of order 1, denominate 
ZMGINAR(1), the pioneers presented by Berreto-
Souza [1]. Let {Ct}t≥0 is a stationary of a random  
variable with ZMG(α, β); see detailed McKenzie [21], 
Al-Osh and Alzaid [22], Bourguinon and Weiβ [23], and 
Rakitzis et al. [24]. By definition, the ZMGINAR(1)  
process can be defined as

,

For t ≥ 0, {ωt}i≥0 is identically independent random 
variables of the count series; Ct–l and Ct independent 
for all t ≥ 1. The mean and variance are

and

.

Where α is the probability of zero modified geometric 
distribution, and β is the probability of zero. Thus,  
if α ∈ (0,1) and β ∈ (–1/α,0), ZMGINAR(1) model 
presents underdispersion, if α ∈ (0,1) and β = –1 
ZMGINAR(1) model is equidispersed, and for β > 0  
and α ∈ (–1,1) ZMGINAR(1) model presents  
overdispersion. The approximation of the parameters 
of the ZMGINAR(1) model can calculate by following  
as

 (1)

and

 (2)

3 The Control Chart for ZMGINAR (1) Model

The control charts used to measure the shift magnitude 
of the ZMGINAR(1) process are:

3.1  Shewhart control chart

The Shewhart control chart is proposed by Shewhart 
[2]. It is suitable for a measure or quantitative data. 
Let C is a sample of the ZMGINAR(1) process. The 
statistics of the Shewhart chart of the ZMGINAR(1) 
model is

 The expectations and variance of the Shewhart 
chart can be calculated as follows:

and

 

 Thus, the upper and lower bound of the Shewhart 
chart for the ZMGINAR(1) process can be represented 
as follows:

where α(1 – β) is the mean of the ZMGINAR(1) 
model. H1 is the coefficient of the control limits of the 
Shewhart chart.

3.2  Moving average control chart

The moving average (MA) control chart uses a moving 
average, where the previous sample value is averaged 
with the current data, to create a smooth stand-in state 
for the current process variable, which smoothes the 
data to reduce process impact [3], [4]. Suppose C 
is individual observations from the ZMGINAR (1) 
model. The value of the moving average at the time 
is defined as 

 (3)
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where k is the length of the moving average. When the 
process is in-control, the expectation and variance of 
the MA chart are

and

 The monitoring statistics of upper and lower 
control limits of the MA chart are 

 (4)

where H2 is a coefficient of control limit determined 
based on the desired in-control ATS (ATS0), the MA 
chart can detect process change when the signal is out 
of control, divided into 2 cases; when MAi < LCL or  
MAi > UCL. 

4 A Precise Formula for ATS of MA chart for 
ZMGINAR(1) Model 

This section analysis a method for calculating the ATS 
from the precise formula of the ZMGINAR(1) model. 
The precise formula consists of two cases; in-control 
ATS (ATS0) and out-of-control ATS (ATS1) processes. 
The central limit theorem (CLT) can analyze the 
formulation of ATS, and given OC is out of control, 
limit. The limitation of CLT is that it assumes that the 
sample is independent. More details can be found by 
Khoo [5], Areepong and Sukparungsee [14], Chananet 
et al. [15], Phantu et al. [16], Sukparungsee et al. [17], 
Areepong [18], Raweesawat and Sukparungsee [19] 
and Wiwek et al. [20].
 Let ATS = A, then the probability of the sample  
going outside the control limit is 1/A. Note that the overall  
ATS of the MA chart has the following definition:

 (5)

where A+ and A– are the ATS of the upper and lower 
sides of the MA schemes. From Equation (5), the OC 
of the region is divided into 2 cases for several A of 
MA charts. Thus, the ATS of the ZMGINAR(1) model 
can be obtained as

 

 (6)

 From Equation (6), the monitoring statistics of 
the MA chart for the OC state can be replaced by  
Equation (3) in Equation (6). Therefore, the probability 
of statistics for the MA chart is

 (7)

 Again by the properties of the control limit of the 
MA chart, it can be substituted from Equation (4) into 
Equation (7) and then rewritten as follows:

 By definition, The CLT can be applied to derive the 
probability of OC for the MA chart. Then, the precise  
formulas of the MA chart for the ZMGINAR(1) model 
can be computed by
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 (8)

According to Equation (8), let

 (9)

and  

 (10)

 In order to calculate the ATS for MA chart precise 
formulas, it is helpful to replace G from Equation (9) 
and T from Equation (10) in Equation (6). Therefore, 
it can be written as

 

Given that ATS = A, Then

 (11)

 Finally, the precise formula of the MA chart for 
the ZMGINAR(1) model can be evaluated by formula 
Equation (11)

 

 Let μ = α(1 – β), when the situation is in-control 
state, then ATS = ATS0, replace the value of parameter 
μ with μ0 The processed explicit formulas of ATS0 of 
the MA chart for the ZMGINAR(1) model is computed 
by Equation (12).
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 (12)

 When the situation is an out-of-control state, then 
ATS = ATS1, replace the value of parameter μ with μ1. 
The shift of parameter of ZMGINAR(1) process in 
this research is μ1 = μ0 + δ, with δ = {0.02, 0.04, 0.06, 
0.08, 0.1, 0.5, 1.0, 1.5, 2.0}. The explicit formula of 
the ATS1 of the MA chart is 

 

 (13)

5 The Numerical Results

5.1  Average time to signal of MA chart for  
ZMGINAR(1) model.

In this part, the performance of the MA chart for the 
ZMGINAR(1) model is calculated by the precise formula  
in Equations (12) and (13), respectively, using the 
Mathematical software® [25]. Monte Carlo Simulation 
calculated the numerical result of the Shewhart chart. 
As previously described, attention depends on detecting  
a shift in parameters μ from ZMGINAR(1) model. It 
is assumed that there are no shifts in the parameter β,  
where β > 0 are the process of an excessive number 
of zeros and β < 0 are the process of a deficit number  
of zeros. In this research, consider the following 
values of β, –0.05 and 0.05. The shift of magnitudes 
in the study is μ1 = μ0 + δ, with δ = {0.02, 0.04, 0.06, 
0.08, 0.1, 0.5, 1.0, 1.5, 2.0}. Table 1 summarizes the 
numerical results for the following configurations:  
α = 0.3, β = –0.05, 0.05. Table 2 contains the numerical  
results for the following configurations: α = 0.5,  
β = –0.05, 0.05. The performance comparison results 
from the above table can be summarized as follows: 
the MA chart detects average processing shifts more 
effectively than the Shewhart chart at all transition 
levels. For the ZMGINAR(1) model, the change is 
moderate when the process change exceeds 1. As a 
result, the MA chart detects changes better than the 
Shewhart chart.

Table 1: Comparison of average time to signal of 
control chart of ZMGINAR(1) model for α = 0.3,  
ATS0 = 370 and k = 3

δ
β

–0.05 0.05
Shewhart MA Shewhart MA

0.00 370.400 370.398 370.400 370.398
0.02 332.785 250.811 344.183 249.429
0.04 305.931 174.086 310.557 172.981
0.06 286.143 124.097 288.743 123.550
0.08 241.326 90.878 243.298 90.792
0.10 219.528 68.309 221.526 68.529
0.50 146.286 5.088 147.342 5.296
1.00 110.342 2.430 112.349 2.505
1.50 75.941 1.860 77.625 1.902
2.00 32.183 1.617 34.956 1.647

Note: Italic is a minimum of ATS1.
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Table 2: Comparison of average time to signal of  
control chart of ZMGINAR(1) model for β = 0.5, ATS0 
= 370 and k = 3

δ
β

–0.05 0.05
Shewhart MA Shewhart MA

0.00 370.400 370.398 370.400 370.398
0.02 325.467 286.258 327.462 284.925
0.04 306.172 222.780 307.948 221.368
0.06 276.334 174.913 277.926 173.885
0.08 239.165 138.725 340.714 138.178
0.10 206.742 43.510 208.363 111.110
0.50 152.469 6.560 153.948 9.240
1.00 107.315 3.252 109.765 3.500
1.50 79.210 2.505 80.255 2.505
2.00 33.208 1.902 35.971 1.902

Note: Italic is a minimum of ATS1.

5.2  Optimal design of MA chart for ZMGINAR(1) 
model

The optimal parameter of the MA chart can be calculated  
from the precise formula in Equation (12). To illustrate  
the optimization of the ZMGINAR(1) model  
parameter in case of zero inflation and zero deflation.  
In this research, the following values of β are  
considered: β = {–0.1, 0.1}. The shift of magnitude 
in the research is μ1 = μ0 + δ, with δ = {0.02, 0.04, 
0.06, 0.08, 0.1, 0.5, 1.0, 1.5, 2.0}. Table 3 contains  
the optimal results of the MA chart following  
configurations: α = 0.3, β = –0.1, and ATS0 = 370. 
Table 4 contains the optimal results of the MA chart 
following configurations: α = 0.3, β = 0.1, and ATS0 = 
370. The results of finding the optimal parameter for 
the length of the moving average (k) of the MA chart 
found that the moving average (k) decreased when 
the change level increased because it resulted in the 
minimal ATS1 value. In contrast, the moving average 
(k) length increased when the change level decreased. 

5.3  Empirical illustrations

This section presents the utilization of the application 
for the ZMGINAR(1) model. The time series of actual 
data are observed. The sample data are obtained from 
the crime data part of the forecasting principles site 
(www.forecastingprinciples.com)—the total number 
of raids reported by the 34th police vehicle battery in 
Pittsburgh. The data section consisted of 144 samples, 

starting from January 1990 through December 2001, 
shown in Figure 1.

Table 3: Optimal design parameter and ATS1 of MA 
chart of ZMGINAR(1) model for α = 0.3, β = –0.1 
and ATS0 = 370

δ k H ATS1

0.02 24 3 243.182
0.04 22 3 187.340
0.06 21 3 135.486
0.08 19 3 109.431
0.10 13 3 74.914
0.50 5 3 10.842
1.00 3 3 3.415
1.50 3 3 2.149
2.00 2 3 1.847

Table 4: Optimal design parameter and ATS1 of MA 
chart of ZMGINAR(1) model for α = 0.3, β = 0.1 and 
ATS0 = 370

δ k H ATS1

0.02 24 3 271.421
0.04 20 3 223.483
0.06 18 3 187.346
0.08 12 3 124.617
0.10 6 3 93.746
0.50 4 3 14.966
1.00 3 3 5.218
1.50 3 3 2.412
2.00 2 3 1.543

 The coefficient parameter of the ZMGINAR(1) 
model is calculated in Equations (1) and (2). The  
estimates of the parameters of the monthly number of 
the 34th police cart beat in Pittsburgh are α = 0.227 and 
β = –0.469. Determine the coefficient of the Shewhart 

Figure 1: Count of aggregated assaults data series.
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and MA charts in detecting data changes equal to 3. 
The LCL and UCL of the Shewhart chart are –2.15 
and 3.57, respectively. Assume that the LCL and 
UCL of MA charts have a moving average of 5. The 
performance of the Shewhart and MA chart is shown 
in Figures 2 and 3, respectively. The results show 
that the first sample outside of the control limit of the  
Shewhart and MA chart is sample no. 117. MA charts 
are suitable for detecting small to moderate changes, 
and MA charts are also easy to calculate chart statistics  
and control chart boundaries. The method used to 
measure the efficiency of the chart from the explicit 
formula is convenient and fast to use as well.

6 Conclusions

This paper proposed the precise formula to calculate 
the ATS of the MA chart for the ZMGINAR(1) model 
with inflated and deflated zeros. Comparing the control 
chart for ZMGINAR(1) model found that the MA chart 
is more effective at detecting process change than the 
Shewhart chart for all cases. In addition, the precise 
formula can help conveniently calculate the appropriate  
parameter (k) of the MA chart when the process 
changes. Implementing the Shewhart and MA charts 
to measure the performance of data change detection 
showed that the MA and Shewhart charts are equally 
effective. Future research can use count series data 
(e.g., financial and economic) and control charts to  
detect small process changes. The presented formula can 
be applied to other control charts and numerical data.

Acknowledgments

The research was found by King Mongkut’s University  

of Technology North Bangkok, Contact no. KMUTNB-
66-Basic-15.

Author Contributions  

S.S.: conceptualization of research topic, research 
design, investigation, reviewing and editing; S.P.: 
methodology, data analysis, data curation, writing 
and revising contents, funding acquisition, project 
administration. All authors have read and agreed to 
the published version of the manuscript.

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] W. Barreto-Souza, “Zero-modified geometric 
INAR(1) process for modeling count time series 
with deflation and inflation zeros,” Journal of 
Time Series Analysis, vol. 36, no. 6, pp. 839–852, 
2015, doi: 10.1111/jtsa.12131.

[2] W. A. Shewhart, Economic Control Chart of 
Quality of Manufactured Product,” New York: 
D. Van Nostrand Company, pp. 115–179, 1931.

[3] M. B. C. Khoo, “A moving average control chart 
for monitoring the fraction non-conforming,” 
Quality and Reliability Engineering International,  
vol. 20, pp. 617–635, 2004, doi: 10.1002/qre.576.

[4] D. C. Montgomery, Statistical Quality Control. 
6th ed. New York: John Wiley&Sons, 2008,  
pp. 72–150.  

[5] D. Brook and D. A. Evans, “An approach to the 
probability distribution of CUSUM run length,” 

Figure 2: The performance of the Shewhart chart. Figure 3: The performance of the MA chart.



9

S. Sukparungsee and S. Phantu, “Explicit Formulas of Moving Average Control Chart for Zero Modified Geometric Integer Valued  
Autoregressive Process.”

Applied Science and Engineering Progress, Vol. 17, No. 1, 2024, 6921

Biometrika, vol. 59, no. 3, pp. 539–549, 1972, 
doi: 10.2307/2334805.

[6] S. V. Crowder, “A simple method for studying run 
length distribution of exponential weight moving 
average control charts,” Technometrics, vol. 29, 
no. 4, pp. 401–407, 1987, doi: 10.2307/1269450.

[7] A. C. Rakitzis, P. Castagliola, and P. E. Maravelakis,  
“Cumulative sum control charts for monitoring  
geometrically inflated Poisson processes: 
An application to infectious disease counts  
data,” Statistical Methods in Medical Research,  
vol. 1, no. 1, pp. 1–19, 2016, doi: 10.1177/ 
0962280216641985.

[8] A. C. Rakitzia, P. E. Maravelakis, and P. Castagliola,  
“CUSUM control charts for the monitoring of 
zero-inflated Binomial processes,” Quality and 
Reliability Engineering International, vol. 32, 
no. 2, pp. 413–430, 2016, doi: 10.1002/qre.1764.

[9] A. C. Rakitzis, C. H. Weiβ, and P. Castagliola, 
“Control charts for monitoring correlated counts 
with a finite range,” Applied Stochastic Models in 
Business and Industry, vol. 49, no. 3, pp. 553–573, 
2022, doi: 10.1080/02664763.2020.1820959.

[10] S. Sukparungsee, “Average run length of  
cumulative sum control chart by Markov chain 
approach for zero-inflated Poisson process,” 
Thailand Statistician, vol. 16, no. 1, pp. 6–13, 
2018, 

[11]  S. Phanyam, “The Integral equation approach 
for solving the average run length of EWMA 
process for autocorrelated process,” Thailand 
Statistician, vol. 19, no. 3, pp. 627–641. 2021.

[12] Y. Areepon and S. Sukparungsee, “An integral 
equation approach to EWMA chart for detecting 
a change in lognormal distribution,” Thailand 
Statistician, vol. 8, no. 1, pp. 47–61, 2010.

[13] C. Chananet, Y. Areepong, and S. Sukparungsee,  
“On designing a moving average-range control 
chart for enhancing a process variation detection,”  
Applied Science and Engineering Progress, vol. 17,  
no. 1, 2024, Art. no. 6882, doi: 10.14416/j.asep. 
2023.06.001 

[14] Y. Areepong and S. Sukparungsee, “The closed-
form formulas of average run length of moving 
average control chart for non-conforming for 
zero-inflated process,” Far East Journal of  
Mathematical Sciences, vol. 75, pp. 385–400, 
2013.

[15] C. Chananet, Y. Areepong, and S. Sukparungsee, 
“An approximate formula for ARL in moving  
average chart with ZINB data,” Thailand  
Statistician, vol. 13, no. 2, pp. 209–222, 2015.

[16] S. Phantu, S. Sukparungsee, and Y. Areepong, 
“Explicit expressions of average run length of 
moving average control chart for Poisson integer-
valued autoregressive model,” in Proceeding of 
the International Multiconference of Engineers 
and Computer Scientists, vol. 2, pp. 1–4, 2016.

[17] S. Sukparungsee, S. Phantu, and Y. Areepong, 
“Explicit formula of average run length of  
moving average control chart for Poisson 
INMA(1) process,” Advances and Applications 
in Statistics, vol. 52, no. 4, pp. 235–250, 2018, 
doi: 10.17654/as052040235.

[18] Y. Areepong, “Moving average control chart for 
monitoring process mean in INAR(1) process  
with zero-inflated Poisson,” International  
Journal of Science and Technology, vol. 4, no. 3,  
pp. 138–149, 2018, doi: 10.20319/mijst. 
2018.43.138149.

[19] K. Raweesawat and S. Sukparungsee, “Explicit 
formula of ARL on double moving average 
control chart for monitoring process mean of 
ZIPINAR(1) model with an Excessive number 
of zeros,” Applied Science and Engineering 
Progress, vol. 15, no. 3, 2022, Art. no. 4588, doi 
: 10.14416/j.asep.2021.03.002.

[20] S. Wiwek and S. Sukparungsee, “Explicit  
formulas of average run length for mixed moving 
average-exponentially weighted moving average 
control chart,” The Journal of KMUTNB, vol. 33,  
no. 2, pp. 613–625, 2023, doi: 10.14416/j.kmutnb. 
2022.06.005.

[21]  E. McKenzie, “Some simple model for discrete  
variable time series,” Journal of the American  
Water Resources Association (JAWRA), vol. 21,  
no. 4, pp. 645–650, 1985, doi: 10.1111/j.1752 
1688.1985.tb05379.x.

[22] M. A. Al-Osh and A. A. Alzaid, “First-order  
integer-valued autoregressive (INAR(1)) process,”  
Journal of Time Series Analysis, vol. 8, no. 3,  
pp. 261–275, 1987, doi: 10.1111/j.1467-9892.1987. 
tb00438.x.

[23] M. Bourguinon and C. H. Weiβ, “An INAR(1) 
process for modeling count time series 
with equidispersion, underdispersion and  



S. Sukparungsee and S. Phantu, “Explicit Formulas of Moving Average Control Chart for Zero Modified Geometric Integer Valued  
Autoregressive Process.”

10 Applied Science and Engineering Progress, Vol. 17, No. 1, 2024, 6921

overdispersion,” Test, vol. 26, no. 4, pp. 847–868, 
2017.

[24] A. C. Rakitzis, C. H. Weiβ, and P. Castagliola,  
“Control charts for monitoring correlated  

Poisson counts with excessive zeros,” Quality and  
Reliability Engineering International, vol. 33, 
no. 2, pp. 416–430, 2016. 

[25]  Mathematica, Mathematica Version 6.0, 2012. 


