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Abstract
The objective of this study was to derive explicit formulas for the average run length (ARL) of an autoregressive  
moving average with an exogenous variable (ARMAX(p,q,r)) process with exponential white noise on a  
cumulative sum (CUSUM) control chart. To check the accuracy of the ARL derivations, the efficiency of the 
proposed explicit formulas was compared with a numerical integral equation (NIE) method in terms of the 
absolute percentage error. There was excellent agreement between the two methods, but when comparing 
their computational times, the explicit formulas only required 1 second whereas the NIE method required 
599.499–835.891 s. In addition, real-world application of the derived explicit formulas was illustrated using 
Hong Kong dollar exchange rates data with an exogenous variable (the US dollar) to evaluate the ARL of an 
ARMAX (p,q,r) process on a CUSUM control chart.
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1 Introduction

The control chart is an essential tool for statistical  
process control (SPC) that is widely used to monitor the 
quality and to improve a process. Walter A. Shewhart  
pioneered the concept of the control chart in the 1920s, 
with the original application being primarily for  
manufacturing processes. Afterward, control charts 
have been used for development and improvement of 
processes, which, in a practical sense, has been extended  
for use in many applications, including healthcare 
and public-health surveillance, analytical laboratories, 
nuclear power plant control rooms, monitoring of coal 
quality, etc. Three control chart schemes have been 
developed for SPC, namely Shewhart [1], cumulative  
sum (CUSUM) [2], and exponentially weighted  
moving average (EWMA) [3]. Although the Shewhart 
control chart performs well for detecting large process 

changes in the mean, it is inefficient for detecting 
small-to-moderate ones.
 The performances of the CUSUM and EWMA 
control charts are similar. Both are good alternatives to 
the Shewhart control chart when one is interested in the 
detection of small-to-moderate changes in the process 
mean. The CUSUM control chart is widely used in the 
manufacturing industry to detect changes in the quality 
of manufactured products and its application has been 
widely proposed in the statistical literature (e.g. [4]). 
It has also been used in healthcare, such as monitoring 
HIV/AIDS patients in Nigeria [5]. Besides, Van Dobben  
de Bruyn [6] presented a general description of the 
construction of one-sided and two-sided CUSUM 
control charts.
 The use of CUSUM control charts for monitoring  
autocorrelated processes has been studied in many 
aspects, such as for monitoring the process mean for 
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the situation in which observations follow a 1st order 
autoregressive (AR(1)) process with additional random  
errors [7]. Moreover, a distribution-free tabular  
CUSUM chart for autocorrelated data was purposed by 
Kim et al. [8], while Chang and Wu [9] studied the run 
length properties of Shewhart, CUSUM, and EWMA 
charts in a unified functional Markov chain embedding 
approach for AR(1) and AR(2) processes.
 In statistical time series analysis, the error term 
“white noise” usually follows a normal distribution. 
However, in practical problems, correlated observations  
can occur in some processes when the errors comprise  
exponential white noise. Moreover, these correlations  
can affect the properties of CUSUM charts. For instance, 
Jacob and Lewis [10] considered an autoregressive  
moving average process with order (1,1) (ARMA(1,1)) 
when observations are exponentially distributed with 
exponential white noise. Later, a Bayesian analysis of 
an autoregressive model with order 1 (AR(1)) following  
an exponential distribution was conducted by Mohamed  
and Hocine [11], while Pereira and Turkrman [12] 
used exponential white noise in a Bayesian analysis of  
threshold AR models. Recently, Suparman [13] estimated  
the parameters of an AR model with exponential white 
noise when the order was unknown.
 The performance of a CUSUM control chart is 
evaluated in terms of the average run length (ARL), 
which is the most used statistic for measuring the 
performance of quality control charts, including the 
first alarm. ARL0 is while there is no change in the 
statistical process (i.e. in-control) and ARL1 is when 
the process first becomes out-of-control. Therefore, 
the ARL value needs to be as large as possible when 
the process is in control and as small as possible when 
the process is out of control. In general, it is relatively  
straightforward to calculate these values and has been 
used as an argument in discussions by researchers 
in a wide variety of applications. For instance, the  
properties of the ARL for a one-sided CUSUM chart 
[4], [14], [15] and calculating the ARL under time 
series models such as AR(1), MA(1), and ARMA(1,1) 
when the time series is stationary [16], [17].
 Based on the researches previously mentioned, 
there are various methods for the calculation of the 
ARL for the control chart. Page [2] initially derived 
integral equations for the ARLs of a one-sided  
CUSUM control chart, while Goel and Wu [18] obtained  
approximate ARLs in the normal case by employing  

ratios of numerical solutions with two integral  
equations. The Markov chain approach (MCA) proposed  
by Brook and Evans [14] was used to study the run 
length properties of CUSUM charts based on the  
assumption of independent and identically distributed  
(i.i.d) observations. Using MCA to obtain the  
approximate ARLs for the exponential case was  
employed by Lucas [19] while solving the Page's [2] 
integral equation to obtain the ARLs for the exponential  
case was solved by Vardeman and Ray [20]. The  
performance of CUSUM control charts for monitoring  
the process mean was evaluated via a simulation 
approach by Jun and Choi [21] in 1993. Deriving a 
numerical integral equation (NIE) to determine the 
ARLs of control charts was employed by Crowder 
[22]; he used the Fredholm integral equation of the 
second kind for approximations of the run length and 
its variance using a system of linear equations to obtain 
exact expressions for the mean and variance.
 These methods are often used to determine the 
performance of the ARL of control charts. However, 
they are fairly difficult and complex calculations. 
Consequently, a relatively new approach has been to 
derive explicit formulas that are good alternatives. For 
instance, in the explicit formulas for the ARL proposed 
by Mititelu et al. [23], they used the Fredholm integral 
equation for a one-sided EWMA control chart with a 
Laplace distribution and a CUSUM control chart with 
a hyper exponential distribution. Recently, Petcharatet 
et al. [24] derived explicit formulas for the ARLs of 
a CUSUM chart in cases of MA(q) with exponential 
white noise using integral equations based on the  
Fredholm integral equation of the second kind. Later, 
an analytical solution for the ARL of a CUSUM control 
chart for an autoregressive process with one explanatory  
variable (ARX(1)) with exponential white noise 
was presented by Paichit [25]. Finally, Peerajit et al. 
[26] also studied that observations are long memory  
processes with non-seasonal and seasonal ARFIMA 
model with exponential white noise when the NIE 
method is applied for ARL approximation on CUSUM 
chart.
 In this paper, the explicit formulas for the ARL 
of a CUSUM control chart for an ARMA with an 
exogenous variable (ARMAX(p,q,r)) process with 
exponential white noise are derived. The rest of this 
paper is organized as follows. The characteristics of the 
CUSUM control chart and ARMAX(p,q,r) processes 
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along with the assumptions for calculating the ARL 
are presented in Section 2. The explicit solution for the  
ARL of an ARMAX(p,q,r) process is offered in Section 3.  
The integral equation to guarantee the existence and 
uniqueness of the solution for calculating the ARL via 
explicit formulas using Banach’s fixed point theorem is 
proven in Section 4. The numerical scheme to evaluate 
the solution of the integral equations (i.e. the NIE) is 
presented. The results of analytical study to compare 
ARL0 and ARL1 of an ARMAX(p,q,r) process on a 
CUSUM control chart are reported in Section 5. In 
Section 6, real Hong Kong dollar exchange rate data 
with an exogenous variable (the US dollar) are used 
to evaluate the ARLs derived from explicit formulas 
and the NIE method. Last, conclusions are provided 
in Section 7.

2 The CUSUM Control Chart for ARMAX(p,q,r) 
Process and Characteristics

The CUSUM control chart can be defined as follows 
[Equation (1)] [2]:

Zt = max(Zt–1 + Yt – a, 0), t = 1,2,... (1)

where Zt is the CUSUM statistic, Yt is the sequence 
of an ARMAX(p,q,r) process with exponential white 
noise, Z0 = s is an initial value, and a is the constant 
recall reference value for the chart. 
 The ARMAX(p,q,r) process is described by the 
following recursion [Equation (2)]:

Yt = μ + ϕ1Yt–1 + ϕ2Yt–2 +...+ ϕpYt–p + εt – θ1εt–1

– θ2εt–2 –...– θqεt–q +  ωiXit  ; t = 1,2,... (2)

where εt are independent and identically distributed 
(i.i.d.) observations in an exponential distribution, Xt 
are exogenous variables, and   are coefficients. The 
initial value ε0 = 1 for the AR coefficient –1 ≤ ϕi ≤ 1 
and the MA coefficient –1 ≤ θi ≤ 1. It is assumed that 
the initial value for the ARMAX(p,q,r) process is 1.
 In this paper, we consider SPC charts under 
the assumption that sequential observations ε1, ε2,...,  
are independent random variables with distribution  
function F(x, λ)  The parameter λ = λ0 before the 
change-point time (θ ≤ ∞) In the in-control state,  
θ = ∞ means that the change-point time has not yet 

been reached. However, λ > λ0 when the change-point 
time (θ) is reached (the out-of-control state). The 
typical condition on the choice of stopping time τ is 
as follows:

ARL0 = Eθ(τh) (3)

where E∞(.) denotes the expectation under distribution   
F(x, λ0) (in-control) that the change-point occurs at 
point θ, (θ ≤ ∞). In the literature on quality control, 
quantity E∞(τ) the ARL of the in-control process in 
Equation (3). Subsequently, by definition, ARL0 = 
E∞(τ). and a typical practical constraint is  ARL0 = T. 
 Another typical constraint consists of minimizing 
the quantity [Equation (4)]:

ARL1 = Eθ(τh|τh ≥ 1), (4)

where E∞(.) is the expectation under distribution F(x, λ)  
(out-of-control) and λ1 is the value of a parameter after 
the change-point.
 The first passage of time on the CUSUM control 
chart is given by [Equation (5)]

τh = inf {t > 0 : Zt > h}, (5)

where h is a known constant parameter for the upper 
control limit.

3 ARL Explicit Formulas for an ARMAX(p,q,r) 
Process on a CUSUM Control Chart

In this section, the explicit solution for the ARL using 
the Fredholm integral equation of the second kind 
is derived. Let C(s) = E(τh) < ∞ be the ARL of the  
CUSUM control chart after it has been reset to s ∈ [0, h].  
The solution for the integral equation is as follows:

C(s) = 1 + Ez [I{0 < Z1 < h}C(Z1)] + Pz {Z1 = 0} C(0).

Theorem 3.1 The explicit formulas for the ARL of an 
ARMAX(p,q,r) process on a CUSUM control chart is

where  s ≥ 0.
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Proof. 

 (6)

Let g be constant as g = C(y)e–λydy. C(s) can be  
written as 

For s = 0 then 

Then 

 (7)

Now, constant g can be found:

 Multiplying both sides of the equation by λ 

 

 

 Substituting constant g into Equation (7), we obtain

 As previously mentioned, λ = λ0 implies that the 
process is in the in-control state. Thus, the explicit 
analytical solution for ARL0 can be written as

 (8)
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 On the contrary, if the process is in the out-
of-control state, the value of exponential parameter  
λ = λ0(1 + δ), where λ > λ0 and δ is the shift size. 
Hence, the explicit analytical solution for ARL1 can 
be expressed as [Equation (9)]

 (9)

4 The Existence and Uniqueness of the Solution 
for the ARL Using the Explicit Formulas

The ARL is often computed as a numerical solution to 
an integral equation. In this section, some important 
definitions from real analysis and Banach’s fixed point 
theorem to verify the existence and uniqueness of the 
explicit analytical solution for ARL are derived.

Definition 4.1: Sequence {un}n ≥ 0 in (M, d) is said to 
converge if u ∈ M such that N ∈ Z exists for all ε > 0 
and d(un, u) < ε exists for all n ≥ N. 
Definition 4.2:  Sequence {un}n ≥ 0 ∈ M is said to be 
Cauchy if N ∈ Z exists for all ε > 0  and d(um, un) < ε 
exists for all m, n ≥ N. 
Definition 4.3: The metric space is said to be complete 
if all Cauchy sequences {un}n ≥ 0 converge.
Definition 4.4: The fixed point of continuous function   
T; M → M is point for which u*, T(u*) = u*. 
Definition 4.5: Let (M, d) be a metric space. Function   
T; M → M is said to be a contraction if 0 ≤ η < 1 such 
that d(T(u), T(v)) ≤ ηd(u, v) for all u, v ∈ X.
Note that: Metric space (M, d) is vector space M with 
metric d.
Theorem 4.1: (Banach’s fixed point theorem) [27].
Let (M, d) be a complete metric space. Suppose T;  
M → M is a contraction, then T is a specific and unique 
fixed point.
Remark: Metric space (M, d) is vector space M with 
metric d. Thus, normed vector space (M, ||.||) comprising  
vector space M with norm ||.|| can be defined by  
d(u, v) = ||u – v||. 
Theorem 4.2: The ARL of an ARMAX(p,q,r) process  
on a CUSUM control chart when assuming the  
existence and uniqueness of the explicit analytical 
solution for ARL can be obtained by solving the  
integral equation.
Proof: [Existence]. 

Let T be a contraction in complete metric space (M, d), 
then arbitrarily take ARL1 ∈ M and define sequence   
{ARLn}n ≥ 0 by setting ARLn = T(ARLn – 1) for each  
n ≥ 1. First of all, via iteration we can obtain

where
ηd(ARLn, ARLn – 1) = ηd(T(ARLn – 1), T(ARLn – 2)) 
d(ARLn + 1, ARLn) = ηnd(ARL 1, ARL0); for each n > 0.  
 The distance between ARLm and ARLn, for all  
m > n ≥ N, can then be estimated using the triangle 
inequality.

 Using the formula for the sum of geometric series, 
we obtain

Since 0 ≤ η < 1 implies that d(ARLm, ARLn) → 0 as  
n → ∞. That is to say, {ARLn}n ≥ 0 is a Cauchy sequence. 
As (M, d) is complete, {ARLn} converges to ARL ∈ M.  
Thus, there exists a unique point ARL0 ∈ M such that

where ARL is the fixed point of T. 
Proof: [Uniqueness]. 
To show that operator T is the contraction mapping, let 
ARL1 and ARL2 be two arbitrary functions in C[0, h]  
Assume that the pair (M, || ||)∞ is the complete metric 
space where the particular metric M = C[0, h] is a set 
of all continuous functions of ARL defined on[0, h], 
then C([0, h]) becomes norm space if we define

for every function ARL(.) ∈ C([0, h]) where k(s, y) is 
called the kernel function of the integral equation for 
ARL obtained by using Equation (6):
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Therefore,   

where η < 1 and  is a positive  

constant. The triangular inequality can be used for the 
supremum norm because

That is to say, T: C[0, h] → C[0, h] is the contraction 
mapping in the complete metric space (C[0, a], ||.||). By 
Theorem 4.1, there exists a unique solution such that 
T(ARL)(s) = ARL(s).
 This completes the proof. Therefore, the explicit 
formulas for the ARL of an ARMAX(p,q,r) process on 
a CUSUM control chart have been verified in terms of 
existence and uniqueness.

5 Numerical Results

In this section, the results for ARL0 and ARL1 of 
an ARMAX(p,q,r) process on a CUSUM chart are  
compared. The numerical scheme to evaluate the solution  
of the integral equations (i.e. the NIE) is given by

 (10)

where  and  

 The ARL results are reported in Table 1. The 
parameter values chosen for the CUSUM control 
chart were a = 2, 2.5, and 3, the desired ARL0 = 370, 
in-control parameter λ0 = 1, and magnitude of the 
change is λ1. Using the CUSUM chart parameters a 
and h (the CUSUM control limit), each model was 
selected to give the desired in-control ARL0 = 370. 
For the parameters h are calculated from Equation (8).  
It was found that parameter a increased while h  
decreased in the process. We considered the performance  
of the proposed explicit formulas in terms of the  
computational time and the difference between the 
absolute percentage errors computed as follows:

 We also compared the computational times required  
to compute the numerical values for ARL0 and ARL1.
 Note that λ0 = 1 is the value of the in-control 
parameter. The columns for λ > 1 correspond to the 
out-of-control parameter and are thus the values for 
ARL1. The numbers in each cell in the table represent 
the value of ARL1 and the computational time for the 
calculations are in parentheses. 
 The results reported in Table 1 show that those 
for the proposed explicit formulas are close to those 
for NIE. It should be mentioned that the results from 
both methods in terms of the difference between their 
absolute percentage errors (Diff) were less than 0.35%. 
The efficiency when calculating ARL1 depends on 
the computation time; the explicit formulas required 
a computational time of less than 1 s. whereas NIE 
required 599.499–835.891 seconds.
 The results comparing the reference values with  
a = 2, 2.5, and 3 for ARL0 = 370 are presented in 
Figures 1–3. Considering the mean changes (λ1), the 
magnitude of λ increases from 1 to 5, respectively. It 
was found that the ARL1 using the explicit formulas 
decreased for each level in the process mean and every 
reference value parameter (a) of the CUSUM chart. 
In addition, a = 2 gave the lowest ARL1 results for all 
magnitudes of process shifts for all models and was 
thus more effective for detecting shifts in the process 
mean than a = 2.5 and 3.
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Table 1: ARL1 values for ARMAX(p,q,r) of CUSUM chart using explicit formulas against NIE at ARL0 = 370

Models Parameters a h ARL
λ1

1.01 1.03 1.05 1.07 1.10 1.30 1.50 2.00 3.00 5.00

ARMAX 
(1, 2, 1)

ϕ1 = 0.1, 
θ1 = 0.1,
θ2 = –0.2,
ω1 = 0.75

2.0 4.5801

Explicit 344.72 299.774 262.142 230.449 191.734 71.333 35.872 13.104 5.541 1.139

CPUExp 0.014 0.014 0.014 0.013 0.014 0.014 0.014 0.014 0.014 0.014

NIE 343.473 298.739 261.278 229.723 191.17 71.196 35.826 13.079 5.539 1.138

CPUNIE 631.781 652.688 648.25 627.562 630.453 636.594 765.469 655.281 643.609 645.123

Diff(%) 0.36 0.35 0.33 0.32 0.29 0.19 0.13 0.19 0.04 0.09

2.5 3.663

Explicit 347.003 306.268 271.607 241.959 205.069 83.097 43.288 15.599 6.052 2.986

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 345.855 305.283 270.757 241.222 204.470 82.909 43.210 15.583 6.049 2.986

CPUNIE 637.937 726.032 727.266 729.516 784.359 787.391 704.89 709.156 707.938 710.734

Diff(%) 0.33 0.32 0.31 0.30 0.29 0.23 100.00 0.10 0.05 0.00

3.0 3.023

Explicit 348.162 308.976 275.44 246.593 210.462 88.271 46.824 16.999 6.425 3.059

CPUExp 0.014 0.014 0.014 0.014 0.015 0.014 0.014 0.014 0.014 0.014

NIE 347.171 308.117 274.693 245.94 209.924 88.088 46.744 16.98 6.421 3.058

CPUNIE 835.891 648.775 644.453 690.391 689.515 731.653 705.359 680.234 689.516 692.047

Diff(%) 0.28 0.28 0.27 0.26 0.26 0.21 0.17 0.11 0.06 0.03

ARMAX 
(1, 3, 1)

ϕ1 = –0.1, 
θ1 = –0.1,
θ2 = –0.2,
θ3 = –0.3,
ω1 = 0.5

2.0 5.445

Explicit 339.508 286.406 243.283 208.207 166.498 52.055 25.026 10.217 5.185 2.994

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 338.002 286.014 243.189 208.122 166.492 52.071 25.011 10.213 5.176 2.988

CPUNIE 658.249 609.283 710.014 705.219 678.958 645.253 689.009 701.016 643.129 684.160

Diff(%) 0.44 0.14 0.04 0.04 0.01 0.03 0.06 0.04 0.17 0.20

2.5 3.9697

Explicit 346.283 304.468 269.034 238.846 201.462 79.799 41.131 14.818 5.870 2.959

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 345.080 303.443 268.157 238.091 200.854 79.617 41.0588 14.803 5.867 2.959

CPUNIE 603.328 599.499 611.172 603.063 599.750 600.922 603.703 600.719 616.437 658.719

Diff(%) 0.35 0.34 0.33 0.32 0.30 0.23 0.18 0.10 0.05 0.00

3.0 3.265

Explicit 347.839 308.154 274.253 245.143 208.758 86.578 45.642 16.513 6.289 3.030

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 348.001 308.045 274.569 245.098 208.145 86.579 45.528 16.269 6.236 3.695

CPUNIE 695.269 679.021 615.228 708.208 639.228 699.256 668.429 692.128 696.129 666.173

Diff(%) 0.05 0.04 0.12 0.02 0.29 0.02 0.25 0.27 0.21 0.10

ARMAX 
(2, 3, 1)

ϕ1 = 0.1, 
ϕ2 = 0.2, 
θ1 = 0.1,
θ2 = 0.2,
θ3 = 0.3,
ω1 = 0.5

2.0 3.9711

Explicit 346.694 304.819 269.336 239.107 201.673 79.863 41.157 14.824 5.872 2.960

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 346.181 304.615 269.235 239.201 201.539 79.855 41.152 14.819 5.856 2.961

CPUNIE 630.259 689.103 710.269 695.269 659.358 645.293 661.289 682.036 638.069 685.236

Diff(%) 0.15 0.07 0.04 0.04 0.07 0.01 0.01 0.03 0.27 0.03

2.5 3.265

Explicit 347.839 308.154 274.253 245.143 208.758 86.5784 45.642 16.513 6.289 3.030

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 346.783 307.243 273.462 244.453 208.191 86.391 45.561 16.494 6.285 3.029

CPUNIE 714.300 709.110 716.093 686.392 683.687 697.75 702.953 699.828 699.766 712.16

Diff(%) 0.30 0.30 0.29 0.28 0.27 0.22 0.18 0.12 0.06 0.03

3.0 2.6812

Explicit 348.621 309.966 276.821 248.06 212.406 90.22 48.213 17.596 6.603 3.100

CPUExp 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014

NIE 347.968 309.858 276.751 248.012 212.218 90.568 48.159 17.569 6.596 3.112

CPUNIE 702.589 698.025 658.215 711.258 689.258 685.256 651.489 689.008 645.189 698.179

Diff(%) 0.19 0.03 0.03 0.02 0.09 0.39 0.11 0.15 0.11 0.39
CPUExp and CPUNIE are the computational time (Second) of explicit formulas and NIE method, respectively.
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6 Application of the Proposed Explicit Formulas 
with Real Data

The results of evaluating the ARLs from the explicit  
formulas and NIE using Hong Kong dollar exchange 
rate data [28] with an exogenous variable (the US dollar)  
are reported in Tables 2 and 3.

Table 2: Comparison of ARL value between explicit 
formulas and NIE method with data on Hong Kong 
dollar exchange rate for ϕ1 = 0.311162, ϕ2 = 0.618779,   
θ1 = 0.99723, and ω1 = 0.99723 at ARL0 = 370

δ
a = 1.45, h = 0.01095

Explicit NIE
Diff(%)

ARL CPU ARL CPU
0.000 370.014 0.014 368.761 657.513 0.34
0.001 71.537 0.016 71.382 659.214 0.22
0.002 27.646 0.014 27.605 634.003 0.15
0.003 15.099 0.014 15.083 637.186 0.11
0.004 9.986 0.014 9.978 638.699 0.09
0.005 7.403 0.014 7.398 639.620 0.07
0.006 5.903 0.014 5.899 640.165 0.07
0.007 4.942 0.014 4.940 638.730 0.04
0.008 4.282 0.014 4.281 636.609 0.02
0.009 2.192 0.014 2.192 640.603 0.00
0.100 1.722 0.014 1.722 642.584 0.00

CPU is the computational time (Second) of method.

Table 3: Comparison of ARL value between explicit 
formulas and NIE method with data on Hong Kong 
dollar exchange rate for ϕ1 = 0.311162, ϕ2 = 0.618779, 
θ1 = 0.99723, and ω1 = 0.99723 at ARL0 = 500

δ
a = 1.45, h = 0.01195

Explicit NIE
Diff(%)

ARL CPU ARL CPU
0.000 500.252 0.014 498.385 640.493 0.37
0.001 87.219 0.014 87.016 641.321 0.23
0.002 31.800 0.014 31.750 643.270 0.16
0.003 16.793 0.015 16.774 640.135 0.11
0.004 10.883 0.014 10.873 640.010 0.09
0.005 7.964 0.014 7.959 638.402 0.06
0.006 6.294 0.014 6.291 638.060 0.05
0.007 5.236 0.014 5.234 639.214 0.04
0.008 4.516 0.014 4.514 637.997 0.04
0.009 2.263 0.017 2.263 639.588 0.00
0.100 1.764 0.014 1.764 639.433 0.01

CPU is the computational time (Second) of method.

Figure 1: ARL values for ARMAX(1, 2, 1) of CUSUM 
chart using explicit formulas.

Figure 2: ARL values for ARMAX(1, 3, 1) of CUSUM 
chart using explicit formulas.

Figure 3: ARL values for ARMAX(2, 3, 1) of CUSUM 
chart using explicit formulas.
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 The observations were collected monthly from 
January 2015 to July 2019, and the dataset was shown 
to follow an ARMAX(2, 1, 1) process with coefficients 
ϕ1 = 0.311162, ϕ2 = 0.618779, θ1 = 0.997230, ω1 = 
0.997230, and the errors were exponential white noise 
with parameter λ = 0.00295. For the CUSUM control 
chart, reference value a = 1.45 and control limit value  
h = 0.01095, and 0.01195 were used for ARL0 = 370 and 
500, respectively. The results in Tables 2 to 3 follow  
a similar trend to those in Table 1. The numerical 
results from the proposed formulas are very close to 
the NIE results for all shift sizes in the process mean.

7 Conclusions

Explicit formulas for ARL of an ARMAX(p,q,r) 
process with exponential white noise on a CUSUM 
control chart are presented in this paper. The proposed 
explicit formulas were easy to calculate and code and 
required much less computational time to execute 
than NIE. Thus, we suggest that they can be applied 
to real-world applications for a variety of processes 
in finance, economics, industrial manufacturing, etc. 
Moreover, the proposed explicit formulas for the ARL 
can be extended to other control charts.
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