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Abstract

The objective of this study was to derive explicit formulas for the average run length (ARL) of an autoregressive
moving average with an exogenous variable (ARMAX(p,q,r)) process with exponential white noise on a
cumulative sum (CUSUM) control chart. To check the accuracy of the ARL derivations, the efficiency of the
proposed explicit formulas was compared with a numerical integral equation (NIE) method in terms of the
absolute percentage error. There was excellent agreement between the two methods, but when comparing
their computational times, the explicit formulas only required 1 second whereas the NIE method required
599.499-835.891 s. In addition, real-world application of the derived explicit formulas was illustrated using
Hong Kong dollar exchange rates data with an exogenous variable (the US dollar) to evaluate the ARL of an
ARMAX (p,q,r) process on a CUSUM control chart.

Keywords: Explicit formulas, Average Run Length (ARL), ARMAX(p,q,r)) process, Exponential white noise

1 Introduction

The control chart is an essential tool for statistical
process control (SPC) that is widely used to monitor the
quality and to improve a process. Walter A. Shewhart
pioneered the concept of the control chart in the 1920s,
with the original application being primarily for
manufacturing processes. Afterward, control charts
have been used for development and improvement of
processes, which, in a practical sense, has been extended
for use in many applications, including healthcare
and public-health surveillance, analytical laboratories,
nuclear power plant control rooms, monitoring of coal
quality, etc. Three control chart schemes have been
developed for SPC, namely Shewhart [1], cumulative
sum (CUSUM) [2], and exponentially weighted
moving average (EWMA) [3]. Although the Shewhart
control chart performs well for detecting large process

changes in the mean, it is inefficient for detecting
small-to-moderate ones.

The performances of the CUSUM and EWMA
control charts are similar. Both are good alternatives to
the Shewhart control chart when one is interested in the
detection of small-to-moderate changes in the process
mean. The CUSUM control chart is widely used in the
manufacturing industry to detect changes in the quality
of manufactured products and its application has been
widely proposed in the statistical literature (e.g. [4]).
It has also been used in healthcare, such as monitoring
HIV/AIDS patients in Nigeria [5]. Besides, Van Dobben
de Bruyn [6] presented a general description of the
construction of one-sided and two-sided CUSUM
control charts.

The use of CUSUM control charts for monitoring
autocorrelated processes has been studied in many
aspects, such as for monitoring the process mean for
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the situation in which observations follow a 1st order
autoregressive (AR(1)) process with additional random
errors [7]. Moreover, a distribution-free tabular
CUSUM chart for autocorrelated data was purposed by
Kim et al. [8], while Chang and Wu [9] studied the run
length properties of Shewhart, CUSUM, and EWMA
charts in a unified functional Markov chain embedding
approach for AR(1) and AR(2) processes.

In statistical time series analysis, the error term
“white noise” usually follows a normal distribution.
However, in practical problems, correlated observations
can occur in some processes when the errors comprise
exponential white noise. Moreover, these correlations
can affect the properties of CUSUM charts. For instance,
Jacob and Lewis [10] considered an autoregressive
moving average process with order (1,1) (ARMA(1,1))
when observations are exponentially distributed with
exponential white noise. Later, a Bayesian analysis of
an autoregressive model with order 1 (AR(1)) following
an exponential distribution was conducted by Mohamed
and Hocine [11], while Pereira and Turkrman [12]
used exponential white noise in a Bayesian analysis of
threshold AR models. Recently, Suparman [ 13] estimated
the parameters of an AR model with exponential white
noise when the order was unknown.

The performance of a CUSUM control chart is
evaluated in terms of the average run length (ARL),
which is the most used statistic for measuring the
performance of quality control charts, including the
first alarm. ARLO is while there is no change in the
statistical process (i.e. in-control) and ARL1 is when
the process first becomes out-of-control. Therefore,
the ARL value needs to be as large as possible when
the process is in control and as small as possible when
the process is out of control. In general, it is relatively
straightforward to calculate these values and has been
used as an argument in discussions by researchers
in a wide variety of applications. For instance, the
properties of the ARL for a one-sided CUSUM chart
[4], [14], [15] and calculating the ARL under time
series models such as AR(1), MA(1), and ARMA(1,1)
when the time series is stationary [16], [17].

Based on the researches previously mentioned,
there are various methods for the calculation of the
ARL for the control chart. Page [2] initially derived
integral equations for the ARLs of a one-sided
CUSUM control chart, while Goel and Wu [18] obtained
approximate ARLs in the normal case by employing

ratios of numerical solutions with two integral
equations. The Markov chain approach (MCA) proposed
by Brook and Evans [14] was used to study the run
length properties of CUSUM charts based on the
assumption of independent and identically distributed
(i.i.d) observations. Using MCA to obtain the
approximate ARLs for the exponential case was
employed by Lucas [19] while solving the Page's [2]
integral equation to obtain the ARLs for the exponential
case was solved by Vardeman and Ray [20]. The
performance of CUSUM control charts for monitoring
the process mean was evaluated via a simulation
approach by Jun and Choi [21] in 1993. Deriving a
numerical integral equation (NIE) to determine the
ARLs of control charts was employed by Crowder
[22]; he used the Fredholm integral equation of the
second kind for approximations of the run length and
its variance using a system of linear equations to obtain
exact expressions for the mean and variance.

These methods are often used to determine the
performance of the ARL of control charts. However,
they are fairly difficult and complex calculations.
Consequently, a relatively new approach has been to
derive explicit formulas that are good alternatives. For
instance, in the explicit formulas for the ARL proposed
by Mititelu et al. [23], they used the Fredholm integral
equation for a one-sided EWMA control chart with a
Laplace distribution and a CUSUM control chart with
a hyper exponential distribution. Recently, Petcharatet
et al. [24] derived explicit formulas for the ARLs of
a CUSUM chart in cases of MA(q) with exponential
white noise using integral equations based on the
Fredholm integral equation of the second kind. Later,
an analytical solution for the ARL of a CUSUM control
chart for an autoregressive process with one explanatory
variable (ARX(1)) with exponential white noise
was presented by Paichit [25]. Finally, Peerajit et al.
[26] also studied that observations are long memory
processes with non-seasonal and seasonal ARFIMA
model with exponential white noise when the NIE
method is applied for ARL approximation on CUSUM
chart.

In this paper, the explicit formulas for the ARL
of a CUSUM control chart for an ARMA with an
exogenous variable (ARMAX(p,q,r)) process with
exponential white noise are derived. The rest of this
paper is organized as follows. The characteristics of the
CUSUM control chart and ARMAX(p,q,r) processes
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along with the assumptions for calculating the ARL
are presented in Section 2. The explicit solution for the
ARL ofan ARMAX(p,q,r) process is offered in Section 3.
The integral equation to guarantee the existence and
uniqueness of the solution for calculating the ARL via
explicit formulas using Banach’s fixed point theorem is
proven in Section 4. The numerical scheme to evaluate
the solution of the integral equations (i.e. the NIE) is
presented. The results of analytical study to compare
ARLO and ARL1 of an ARMAX(p,q,r) process on a
CUSUM control chart are reported in Section 5. In
Section 6, real Hong Kong dollar exchange rate data
with an exogenous variable (the US dollar) are used
to evaluate the ARLs derived from explicit formulas
and the NIE method. Last, conclusions are provided
in Section 7.

2 The CUSUM Control Chart for ARMAX(p,q,r)
Process and Characteristics

The CUSUM control chart can be defined as follows
[Equation (1)] [2]:

Z,=max(Z_,+Y,—a,0),t=12,. (1)

where Z, is the CUSUM statistic, Y, is the sequence
of an ARMAX(p,q,r) process with exponential white
noise, Z, = s is an initial value, and «a is the constant
recall reference value for the chart.

The ARMAX(p,q,r) process is described by the
following recursion [Equation (2)]:
Yy=ut+td Y +¢Y,+. 44,7

+ &= 6]8)?—1

Oy~ O, + D 0 X, s1=12,... 2)
i=1

where ¢, are independent and identically distributed
(i.i.d.) observations in an exponential distribution, X,
are exogenous variables, and are coefficients. The
initial value ¢, = 1 for the AR coefficient -1 < ¢, < 1
and the MA coefficient —1 < ;< 1. It is assumed that
the initial value for the ARMAX(p,q,r) process is 1.
In this paper, we consider SPC charts under
the assumption that sequential observations ¢, &,,...,
are independent random variables with distribution
function F(x, 1) The parameter 1 = 4, before the
change-point time (6 < o) In the in-control state,
6 = oo means that the change-point time has not yet

been reached. However, 1 > 4, when the change-point
time (6) is reached (the out-of-control state). The
typical condition on the choice of stopping time 7 is
as follows:

ARL,=E(1,) (3)

where E_(.) denotes the expectation under distribution
F(x, 4,) (in-control) that the change-point occurs at
point 6, (8 < ). In the literature on quality control,
quantity E_(7) the ARL of the in-control process in
Equation (3). Subsequently, by definition, ARL, =
E_ (7). and a typical practical constraint is ARL,=T.

Another typical constraint consists of minimizing
the quantity [Equation (4)]:

ARL, = E/(g;|t, > 1), 4)

where E_(.) is the expectation under distribution F(x, 1)
(out-of-control) and 4, is the value of a parameter after
the change-point.

The first passage of time on the CUSUM control
chart is given by [Equation (5)]

t,=inf {t>0: 2> h}, (5)

where 7 is a known constant parameter for the upper
control limit.

3 ARL Explicit Formulas for an ARMAX(p,q,r)
Process on a CUSUM Control Chart

In this section, the explicit solution for the ARL using
the Fredholm integral equation of the second kind
is derived. Let C(s) = E(z,) < o be the ARL of the
CUSUM control chart after it has been reset to s € [0, /].
The solution for the integral equation is as follows:

Cls) =1+ E.[I{0 < Z, < h} C(Z)] + P {Z, = 0} C(0).

Theorem 3.1 The explicit formulas for the ARL of an
ARMAX(p,q,r) process on a CUSUM control chart is

a—p=hY,_ ~$Y, 5 7"'7¢pylfp
4 0 +0,6 5+ 40,8, —Zw,X“

C(s)=e"(1+e = —Ah)—e”,

where s> 0.
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Proof.

s—a+pr @Y +hY o tg,Y,

2 r
=0i& =06, 5—..=0p&,_, +Zw‘X”

C(s) =1+ [C(y)Ae { Je'”dy

a=s—pu—¢Y,_ Y, ,— ¢plp
+0,6,_1+0,6,_5 +..+0, s,q—z

+(1-e [ = })C(O);se[o,a) (6)

Let g be constant as g = _[C(y)e “dy. C(s) can be
written as

A
=016-0y6, 5 -..=0,5,, *zﬂiXu

C(s)=1+Age [ =
oty

S=aUERY Y o b, J

a-s—p-¢¥,.,
-2
+0&+0y6 5+ 40,6, —Zw,X,,

+(l—e[ J)(:(0)

For s = 0 then

A
=016 =026, 5 —..—

C0)=1+Age [

—a+put Y +hY o+t 4, Y,
,
0,614 +Z(u,X,,
i=1
a—p=¢Y_ ~$Y, - Yz »
+Hls, | +0,6 5 +..40, &1 q—z
+(l-e =
[aﬂ‘AYtl b2,
!

A
+016,+0,6 5+ 0,6, 7ZaJIX,I
i=l

' ”J)C(O)

=e +Ag

Then

A
~0&1 =065 —.m

C(s)=1+Age [
{asuammzwpm ]

s—atpt+ @Y+ 4 Y o+, Y }
.

061+ O X,
i=1

-2
+O0& +0y6 5+ F0,8, —Zo),)(,,

+1-e =
a-pu=4Y =4~ =4, Y,
A 016 +026, 5+ 40,8, *waXn
xe = +Ag
a—p=p Y=Y o= =b Y,
g 018 +0,8 5+ +0,,_, —Z(u, X,
= s
=l+e ! +Alg—e”
a—p—hY,_ —$Y, 7‘“7¢pylfp
4 +O 026 5+ F 0,8, —Zw,)(,,
i= As
=1+Ag+e ' -e”. (7

Now, constant g can be found:

h
g=[Cyedy
0

a—p=¢ Y=Y o= =fY,
h +6‘,,,+Hg,2+ 40,6, - Z“’X}
= I(l +Ag+e A _eMye Mdy
0
a=p= Y=Y =Y, »
h +H,s, | 026+t Oy8, q—Zw h
= I(l +Ag+e = Ye " dy — J. eM.eMdy
0 0

A=Y =hY - *¢,,;,
+€,£,,+€7€,2+ AO,E me

=(l+Ag+e J).(/11(1—(3;"1))—}1

Multiplying both sides of the equation by 4

a—p-¢Y,_ —Y,_ Y« p
4 +O& +0y6 5+ 40,8, ‘I—ZMX”
Ag=(+Ag+e TN A==k
a-p=hY,;

A
+016, +0,6 5+ 0,8, —Zw,){,,

AR }

=l+Ag+e B —e " —Jge™™
Ra=2u=Ah Y,y =AY, 5 - AY,
[Jr/lols,ﬁio:s,: o+ A0,6, —Az’:w,)(,, —lh}
—e = —Ah
a=p=hY 1 =hY 2= =9, YI,V,,

A
06 +626 5+ 46,6, —Z(u,X‘,

}.(1 —e)

=(l-e")+e
+Ag(l—e ™= Ah

PRV IS AN A
:

+615,,1 +6r6 5+ 0,6, —qu,X,,

J)—/lh

Agle™=1-e™)1+e

a=p=4Y 1 =hY, 5 -4, Yt—!;
(1 _ e—ih) 4 +6,&+056, 5+ 40,8, q—Zw,X,, h
= i (lte - ) =%
Ae e
a—p=¢Y_ Y o —.—4,Y_,

-

Ah g +016, +0,6 5+ 0,5, —Zro,)([,
‘ 2h

! ) —he

e —ah
Leg=—(1- 1+
g=— (I-e)d+e

Substituting constant g into Equation (7), we obtain

a—p-$Y,  —¢Y, 5. ¢p

*‘91*"/ 1 #0265+ 40,8, Z“’. it
=]

C(s)=e"|1+e —Ah|-e”, 520.
As previously mentioned, 1 = 4, implies that the

process is in the in-control state. Thus, the explicit

analytical solution for ARL, can be written as

1=y =

& +9|a,,1+625r,z+...+645‘,q—2w,X1,

T = k) —e.

(®)

a=p=hY,, Yoy

ARL, =e""(1+e
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On the contrary, if the process is in the out-
of-control state, the value of exponential parameter
A =21 + 9), where 1 > 4, and ¢ is the shift size.
Hence, the explicit analytical solution for ARL, can
be expressed as [Equation (9)]

G R AR A

A
Y 408 +0h8, 5+ 40,8, —Zm,-X,-l

ARL,=e""(1+e T Ah) -t

)

4 The Existence and Uniqueness of the Solution
for the ARL Using the Explicit Formulas

The ARL is often computed as a numerical solution to
an integral equation. In this section, some important
definitions from real analysis and Banach’s fixed point
theorem to verify the existence and uniqueness of the
explicit analytical solution for ARL are derived.

Definition 4.1: Sequence {u,}, ., in (M, d) is said to
converge if u € M such that N € Z exists for all e >0
and d(u,, u) < ¢ exists for all n > N.

Definition 4.2: Sequence {u,},., € M is said to be
Cauchy if N € Z exists for all e > 0 and d(u,,, u,) <e¢
exists for all m, n > N.

Definition 4.3: The metric space is said to be complete
if all Cauchy sequences {u,},-, converge.
Definition 4.4: The fixed point of continuous function
T; M — M is point for which u", T(u") = u".
Definition 4.5: Let (M, d) be a metric space. Function
T, M — M is said to be a contraction if 0 <# < 1 such
that d(T(u), T(v)) < nd(u, v) for all u, v € X.

Note that: Metric space (M, d) is vector space M with
metric d.

Theorem 4.1: (Banach’s fixed point theorem) [27].
Let (M, d) be a complete metric space. Suppose T;
M — M is a contraction, then 7'is a specific and unique
fixed point.

Remark: Metric space (M, d) is vector space M with
metric d. Thus, normed vector space (M, ||.|) comprising
vector space M with norm ||.|| can be defined by
d(u, v)=|u—v|.

Theorem 4.2: The ARL of an ARMAX(p,q,r) process
on a CUSUM control chart when assuming the
existence and uniqueness of the explicit analytical
solution for ARL can be obtained by solving the
integral equation.

Proof: [Existence].

Let 7'be a contraction in complete metric space (M, d),
then arbitrarily take ARL, € M and define sequence
{ARL,},., by setting ARL, = T(ARL, _,) for each
n > 1. First of all, via iteration we can obtain

d(ARL,,,ARL,) = d(T(ARL,),T(ARL, ,))
<nd(ARL,,ARL, )

where

nd(ARL,, ARL, ) = nd(T(ARL, _,), T(ARL, _,))

d(ARL, ., ARL,) =#"d(ARL,, ARL,); for each n>0.
The distance between ARL,, and ARL,, for all
m > n > N, can then be estimated using the triangle
inequality.
m=1
d(ARL,,ARL,)< > d(ARL

i=n

ARL,))

i+l

m=1
< > n'd(ARL,,ARL,).
Using the formula for the sum of geometric series,
we obtain )
d(ARL, ,ARL )< 1’7 d(ARL,,ARL,).
-n
Since 0 <7 < 1 implies that d(ARL,, ARL,) — 0 as
n — oo, Thatis to say, {ARL,},-,1s a Cauchy sequence.
As (M, d) is complete, {ARL,} converges to ARL € M.
Thus, there exists a unique point ARL, € M such that

T(ARL) = T(limARL )=1lim T(ARL )
= limARL, , = ARL,

n—o0

where ARL is the fixed point of 7.

Proof: [Uniqueness].

To show that operator 7'is the contraction mapping, let
ARL, and ARL, be two arbitrary functions in C[O0, /]
Assume that the pair (M, | |)),, is the complete metric
space where the particular metric M = CJ[0, /] is a set
of all continuous functions of ARL defined on[0, /],
then C([0, /]) becomes norm space if we define

E}

h
|| ARL”ac =SUpP, o jk(s,y)dy
0
for every function ARL(.) € C([0, /]) where k(s, y) is
called the kernel function of the integral equation for
ARL obtained by using Equation (6):

s=a=yrpr Yt Yottt
2 r
=016 =026 0 ==0,5,, +zf”qu
i=l

k(s,y)=Ae [
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| T(ARL,)-T(ARL, |,

h
SUP, o || (5, )| ARL, () — ARL, ()] dy
0

h

SUDP,10,4] “k(s, J’)| |ARL1 (»)-ARL, (J’)| dy

0
h

SUp, 4o 1) [|k(s, )| dv | ARL, () - ARL, ()],

0

7|ARL, (») - ARL, ()] .,

IA

IA

Therefore, |T(ARL,)-T(ARL, )| = 7|ARL,— ARL,|
h

where 77 <1 and n =sup I|k(s,y)|dy is a positive
0

constant. The triangular inequality can be used for the

supremum norm because

|ARL, (0)— ARL, (0)| <sup,, ,; |ARL, (s) — ARL, (s)|

=|ARL,- ARL, |,

That is to say, T: C[0, 1] — CJ[O0, /] is the contraction
mapping in the complete metric space (C[0, al, |.[). By
Theorem 4.1, there exists a unique solution such that
T(ARL)(s) = ARL(s).

This completes the proof. Therefore, the explicit
formulas for the ARL of an ARMAX(p,q,r) process on
a CUSUM control chart have been verified in terms of
existence and uniqueness.

5 Numerical Results

In this section, the results for ARLO and ARL1 of
an ARMAX(p,q,r) process on a CUSUM chart are
compared. The numerical scheme to evaluate the solution
of the integral equations (i.e. the NIE) is given by

ARL; (u)=1+ARL (a)F(a-s5s-Y))

+Zw]. ARL\(a ;) f(a;+a-s-T).
= (10)

h,. 1 _h . _
where a, :%(1_5) and w,= il = 1,2,...,m.

The ARL results are reported in Table 1. The
parameter values chosen for the CUSUM control
chart were a = 2, 2.5, and 3, the desired ARL,, = 370,
in-control parameter 4, = 1, and magnitude of the
change is 4,. Using the CUSUM chart parameters a
and 4 (the CUSUM control limit), each model was
selected to give the desired in-control ARL, = 370.
For the parameters / are calculated from Equation (8).
It was found that parameter a increased while 4
decreased in the process. We considered the performance
of the proposed explicit formulas in terms of the
computational time and the difference between the
absolute percentage errors computed as follows:

—ARL,;

Explicit formulas

ARL

We also compared the computational times required
to compute the numerical values for ARL, and ARL,.

Note that 4, = 1 is the value of the in-control
parameter. The columns for 4 > 1 correspond to the
out-of-control parameter and are thus the values for
ARL,. The numbers in each cell in the table represent
the value of ARL, and the computational time for the
calculations are in parentheses.

The results reported in Table 1 show that those
for the proposed explicit formulas are close to those
for NIE. It should be mentioned that the results from
both methods in terms of the difference between their
absolute percentage errors (Diff) were less than 0.35%.
The efficiency when calculating ARL, depends on
the computation time; the explicit formulas required
a computational time of less than 1 s. whereas NIE
required 599.499-835.891 seconds.

The results comparing the reference values with
a=12,25, and 3 for ARL, = 370 are presented in
Figures 1-3. Considering the mean changes (4,), the
magnitude of 4 increases from 1 to 5, respectively. It
was found that the ARL1 using the explicit formulas
decreased for each level in the process mean and every
reference value parameter (a) of the CUSUM chart.
In addition, a = 2 gave the lowest ARL, results for all
magnitudes of process shifts for all models and was
thus more effective for detecting shifts in the process
mean than @ = 2.5 and 3.

AR
Diff (%) = | x100.

Explicit formulas
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Table 1: ARL1 values for ARMAX(p,q,r) of CUSUM chart using explicit formulas against NIE at ARL, =370

G

1.01 1.03 1.05 1.07 1.10 1.30 1.50 2.00 3.00 5.00

Explicit | 344.72 | 299.774 | 262.142 | 230.449 | 191.734 | 71.333 | 35.872 | 13.104 | 5.541 1.139
CPU,, | 0.014 0.014 0.014 0.013 0.014 0.014 0.014 0.014 0.014 0.014
2.0 [4.5801| NIE |[343.473|298.739|261.278 |229.723 | 191.17 | 71.196 | 35.826 | 13.079 | 5.539 1.138
CPUye | 631.781 | 652.688 | 648.25 | 627.562 | 630.453 | 636.594 | 765.469 | 655.281 | 643.609 | 645.123
Diff(%) | 0.36 0.35 0.33 0.32 0.29 0.19 0.13 0.19 0.04 0.09

Explicit | 347.003 | 306.268 | 271.607 | 241.959 | 205.069 | 83.097 | 43.288 | 15.599 | 6.052 2.986
¢, =0.1, CPU,, | 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
?f{’l\z/{Al))( g;i?ol,z’ 2.5 |3.663 | NIE |345.855(305.283 | 270.757 | 241.222 | 204.470 | 82.909 | 43.210 | 15.583 | 6.049 2.986
®,=0.75 CPUye | 637.937 | 726.032 | 727.266 | 729.516 | 784.359 | 787.391 | 704.89 | 709.156 | 707.938 | 710.734
Diff(%) | 0.33 0.32 0.31 0.30 0.29 0.23 100.00 0.10 0.05 0.00

Explicit | 348.162 | 308.976 | 275.44 | 246.593 | 210.462 | 88.271 | 46.824 | 16.999 | 6.425 3.059
CPU,, | 0.014 0.014 0.014 0.014 0.015 0.014 0.014 0.014 0.014 0.014
3.0 |3.023 | NIE |347.171 | 308.117 | 274.693 | 245.94 | 209.924 | 88.088 | 46.744 | 16.98 6.421 3.058
CPUye | 835.891 | 648.775 | 644.453 | 690.391 | 689.515 | 731.653 | 705.359 | 680.234 | 689.516 | 692.047
Diff(%) | 0.28 0.28 0.27 0.26 0.26 0.21 0.17 0.11 0.06 0.03

Explicit | 339.508 | 286.406 | 243.283 | 208.207 | 166.498 | 52.055 | 25.026 | 10.217 | 5.185 2.994
CPU,, | 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
2.0 |5.445| NIE |338.002 |286.014 | 243.189 | 208.122 | 166.492 | 52.071 | 25.011 | 10.213 | 5.176 2.988
CPUye | 658.249 | 609.283 | 710.014 | 705.219 | 678.958 | 645.253 | 689.009 | 701.016 | 643.129 | 684.160
Diffi%) | 0.44 0.14 0.04 0.04 0.01 0.03 0.06 0.04 0.17 0.20

Explicit | 346.283 | 304.468 | 269.034 | 238.846 | 201.462 | 79.799 | 41.131 | 14.818 | 5.870 2.959

Models | Parameters a h ARL

zl‘::g:i: CPUy, | 0.014 | 0014 | 0014 | 0.014 | 0014 | 0.014 | 0014 | 0014 | 0.014 | 0014

?F“;Al;( 0,=-02, | 25 [3.9697) NIE |345.080 |303.443 | 268.157 | 238.091 | 200.854 | 79.617 | 41.0588 | 14.803 | 5.867 | 2.959
” ff::_ooél CPUy; | 603328 | 599.499 | 611.172 | 603.063 | 599.750 | 600.922 | 603.703 | 600.719 | 616.437 | 658.719
b Difi%) | 035 | 034 | 033 | 032 | 030 | 023 | 018 | 010 | 005 | 0.00

Explicit | 347.839 | 308.154 | 274.253 | 245.143 | 208.758 | 86.578 | 45.642 | 16.513 | 6.289 | 3.030

CPUy, | 0.014 | 0014 | 0014 | 0.014 | 0014 | 0.014 | 0014 | 0014 | 0.014 | 0014

3.0 |3.265| NIE | 348001 | 308.045 | 274.569 | 245.098 | 208.145 | 86.579 | 45528 | 16.269 | 6.236 | 3.695

CPUy: | 695.269 | 679.021 | 615.228 | 708.208 | 639.228 | 699.256 | 668.429 | 692.128 | 696.129 | 666.173

Diff%) | 005 | 004 | 012 | 002 | 029 | 002 | 025 | 027 | 021 | 0.10

Explicit | 346.694 | 304.819 | 269336 | 239.107 | 201.673 | 79.863 | 41.157 | 14.824 | 5.872 | 2.960

CPUy, | 0.014 | 0014 | 0014 | 0.014 | 0014 | 0014 | 0014 | 0014 | 0.014 | 0014

20 [39711] NIE |346.181 | 304.615 | 269.235 | 239.201 | 201.539 | 79.855 | 41.152 | 14.819 | 5.856 | 2.961

CPUy; | 630.259 | 689.103 | 710.269 | 695.269 | 659.358 | 645.293 | 661.289 | 682.036 | 638.069 | 685.236

Diff%) | 015 | 007 | 004 | 004 | 007 | 001 | 001 | 003 | 027 | 003

4,=0.1 Explicit | 347.839 | 308.154 | 274.253 | 245.143 | 208.758 | 86.5784 | 45.642 | 16.513 | 6.289 | 3.030

$,=02, CPUy, | 0.014 | 0014 | 0014 | 0.014 | 0014 | 0014 | 0014 | 0014 | 0.014 | 0014

’?;“fﬁ;‘ z;gé: 2.5 |3265| NIE |346.783 | 307.243 | 273.462 | 244.453 | 208.191 | 86391 | 45561 | 16494 | 6.285 | 3.029
0,-03, CPUy; | 714300 | 709.110 | 716.093 | 686.392 | 683.687 | 697.75 | 702.953 | 699.828 | 699.766 | 712.16

@ =05 Diff%) | 030 | 030 | 029 | 028 | 027 | 022 | 018 | 012 | 006 | 003

Explicit | 348.621 | 309.966 | 276.821 | 248.06 | 212.406 | 90.22 | 48.213 | 17.596 | 6.603 3.100
CPU,, | 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014 0.014
3.0 [2.6812| NIE |[347.968 | 309.858 | 276.751 | 248.012 | 212.218 | 90.568 | 48.159 | 17.569 | 6.596 3.112
CPUye | 702.589 | 698.025 | 658.215 | 711.258 | 689.258 | 685.256 | 651.489 | 689.008 | 645.189 | 698.179
Diff(%) | 0.19 0.03 0.03 0.02 0.09 0.39 0.11 0.15 0.11 0.39

CPUy,, and CPU; are the computational time (Second) of explicit formulas and NIE method, respectively.

W. Peerajit and Y. Areepong, ““The Performance of CUSUM Control Chart for Monitoring Process Mean for Autoregressive Moving Average
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6 Application of the Proposed Explicit Formulas
with Real Data

The results of evaluating the ARLs from the explicit
formulas and NIE using Hong Kong dollar exchange
rate data [28] with an exogenous variable (the US dollar)
are reported in Tables 2 and 3.

Table 2: Comparison of ARL value between explicit
formulas and NIE method with data on Hong Kong
dollar exchange rate for ¢, =0.311162, ¢,=0.618779,
6,=10.99723, and w, = 0.99723 at ARL, =370

a=1.45,h=0.01095
Figure 1: ARL values for ARMAX(1, 2, 1) of CUSUM P) Explicit NIE .

chart using explicit formulas. ARL | CPU | aRL | cpu | D%

0.000 370.014 0.014 368.761 | 657.513 0.34

ARMAX(1,3,1) 0.001 71.537 0.016 71.382 | 659.214 0.22

400 0.002 27.646 0.014 27.605 | 634.003 0.15

350 0.003 15.099 0.014 15.083 | 637.186 0.11

300 0.004 9.986 0.014 9.978 638.699 0.09

250 0.005 7.403 0.014 7.398 639.620 0.07

% 200 0.006 5.903 0.014 5.899 640.165 0.07

150 0.007 4.942 0.014 4.940 638.730 0.04

100 0.008 4.282 0.014 4.281 636.609 0.02

50 0.009 2.192 0.014 2.192 640.603 0.00

0 N 0.100 1.722 0.014 1.722 642.584 0.00

1.001.011.031.051.071.101.301.502.003.005.00

~

Figure 2: ARL values for ARMAX(1, 3, 1) of CUSUM
chart using explicit formulas.
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Figure 3: ARL values for ARMAX(2, 3, 1) of CUSUM
chart using explicit formulas.

CPU is the computational time (Second) of method.

Table 3: Comparison of ARL value between explicit
formulas and NIE method with data on Hong Kong
dollar exchange rate for ¢, =0.311162, ¢, =0.618779,
6, =0.99723, and w, = 0.99723 at ARL, = 500

a=1.45,h=0.01195
o Explicit NIE .
Diff(%)
ARL CPU ARL CPU
0.000 | 500.252 | 0.014 | 498.385 | 640.493 0.37
0.001 87.219 0.014 87.016 | 641.321 0.23
0.002 31.800 0.014 31.750 | 643.270 0.16
0.003 16.793 0.015 16.774 | 640.135 0.11
0.004 10.883 0.014 10.873 | 640.010 0.09
0.005 7.964 0.014 7.959 | 638.402 0.06
0.006 6.294 0.014 6.291 | 638.060 0.05
0.007 5.236 0.014 5.234 | 639.214 0.04
0.008 4.516 0.014 4.514 | 637.997 0.04
0.009 2.263 0.017 2.263 | 639.588 0.00
0.100 1.764 0.014 1.764 | 639.433 0.01

CPU is the computational time (Second) of method.

W. Peerajit and Y. Areepong, *“The Performance of CUSUM Control Chart for Monitoring Process Mean for Autoregressive Moving Average
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The observations were collected monthly from
January 2015 to July 2019, and the dataset was shown
to follow an ARMAX(2, 1, 1) process with coefficients
¢, = 0.311162, ¢, = 0.618779, 6, = 0.997230, w, =
0.997230, and the errors were exponential white noise
with parameter 4 = 0.00295. For the CUSUM control
chart, reference value a = 1.45 and control limit value
h=0.01095, and 0.01195 were used for ARL,=370 and
500, respectively. The results in Tables 2 to 3 follow
a similar trend to those in Table 1. The numerical
results from the proposed formulas are very close to
the NIE results for all shift sizes in the process mean.

7 Conclusions

Explicit formulas for ARL of an ARMAX(p,q,r)
process with exponential white noise on a CUSUM
control chart are presented in this paper. The proposed
explicit formulas were easy to calculate and code and
required much less computational time to execute
than NIE. Thus, we suggest that they can be applied
to real-world applications for a variety of processes
in finance, economics, industrial manufacturing, etc.
Moreover, the proposed explicit formulas for the ARL
can be extended to other control charts.
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