Page Header

Facile Green Synthesis of Silver Nanoparticles Using Rubus rosifolius Linn Aqueous Fruit Extracts and its Characterization

Marilen M. Martin, Rodolfo E. Sumayao Jr.

Abstract


Rubus rosifolius Linn is a wild raspberry found in the Philippines. The fruit extract is found to be rich in flavonoids, terpenoids, tannins, and polyphenols. It has been shown to contain interesting profiles of antioxidants and it is not previously explored as a reducing agent, specifically in the field of bio-nano research. Some of these antioxidants have been documented to have anti-cancer potential. In this study, the fruit extracts of sampinit were used as a reducing agent for the synthesis of silver nanoparticles (AgNPs) via a ‘one-pot’ facile approach. Sampinit aqueous fruit extract-AgNPs (SAFE-AgNPs) were synthesized by reducing silver ions using sampinit extract. Optical, chemical, and morphological properties of the synthesized SAFE-AgNPs were characterized. Maximal absorption of SAFE-AgNPs was observed at 415 nm which is associated with the characteristic surface plasmon resonance profile of AgNPs. SAFE-AgNPs displayed highly stable and homogeneous nanoparticles with hydrodynamic size of 85.6 ± 0.98 nm and a zeta potential of –29.5 ± 0.96 mV. HR-TEM analysis of a single crystalline image of SAFE-AgNPs corresponds to hexagonal diffraction pattern and the AgNPs were coated with soft carbon-rich materials. EDX and XRF analysis showed that SAFE-AgNPs are chiefly composed of silver (Ag) and carbon (C), where C was largely localized on the surface of AgNPs. FTIR analysis showed that SAFE-AgNPs contains key chemical functional groups associated with sampinit-derived phytoconstituents. Overall, the biosynthesized SAFE-AgNPs produced small size, spherical shape, and monodisperse population which can be a candidate therapeutic agent for the treatment of various diseases such as cancer.

Keywords



[1] S. Sadhasivam, P. Shanmugam, and K. S. Yun, “Biosynthesis of silver nanoparticles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms,” Colloids Surfaces B Biointerfaces, vol. 81, no. 1, pp. 358–362, Jul. 2010, doi: 10.1016/j.colsurfb.2010.07.036.

[2] J. M. Kobashigawa, C. A. Robles, M. L. Martínez Ricci, and C. C. Carmarán, “Influence of strong bases on the synthesis of silver nanoparticles (AgNPs) using the ligninolytic fungi Trametes trogii,” Saudi Journal of Biological Sciences, vol. 26, no. 7, pp. 1331–1337, 2019, doi: 10.1016/j. sjbs.2018.09.006.

[3] A. Jaganathan, K. Murugan, C. Panneerselvam, P. Madhiyazhagan, D. Dinesh, C. Vadivalagan, A. T. Aziz, B. Chandramohan, U. Suresh, R. Rajaganesh, J. Subramaniam, M. Nicoletti, A. Higuchi, A. A. Alarfaj, M. A. Munusamy, S. Kumar, and G. Benelli, “Earthworm-mediated synthesis of silver nanoparticles: A potent tool against hepatocellular carcinoma, Plasmodium falciparum parasites and malaria mosquitoes,” International Journal of Parasitology, vol. 65, no. 3, pp. 276–284, Feb. 2016, doi: 10.1016/j. parint.2016.02.003.

[4] K. S. Siddiqi, A. Husen, and R. A. K. Rao, “A review on biosynthesis of silver nanoparticles and their biocidal properties,” Journal of Nanobiotechnology, vol. 16, no. 14, 2018, doi: 10.1186/s12951-018-0334-5.

[5] N. Kulkarni and U. Muddapur, “Biosynthesis of metal nanoparticles: A review,” Journal of Nanotechnology, vol. 2014, May 2014, doi: 10.1155/2014/510246.

[6] T. F. Campbell, J. McKenzie, J. A. Murray, R. Delgoda, and C. S. Bowen-Forbes, “Rubus rosifolius varieties as antioxidant and potential chemopreventive agents,” Journal of Functional Foods, vol. 37, pp. 49–57, Jul. 2017, doi: 10.1016/ j.jff.2017.07.040.

[7] S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, and S. N. Upadhyay, “Green synthesis of silver nanoparticles: A review,” Green and Sustainable Chemistry, vol. 6, pp. 34–56, Feb. 2016, doi: 10.4236/gsc.2016.61004.

[8] S. Fahimirad, F. Ajalloueian, and M. Ghorbanpour, “Synthesis and therapeutic potential of silver nanomaterials derived from plant extracts,” Ecotoxicology and Environmental Safety, vol. 168, pp. 260–278, Jan. 2019, doi: 10.1016/j.ecoenv. 2018.10.017.

[9] A. Schröfel, G. Kratošová, I. Šafařík, M. Šafaříková, I. Raška, and L. M. Shor, “Applications of biosynthesized metallic nanoparticles - A review,” Acta Biomaterialia, vol. 10, no. 10, pp. 4023–4042, May 2014.

[10] P. Rauwel, S. Küünal, S. Ferdov, and E. Rauwel, “A review on the green synthesis of silver nanoparticles and their morphologies studied via TEM,” Advances in Material Science and Engineering, vol. 2015, Aug. 2014, doi: 10.1155/ 2015/682749.
[11] G. S. Karatoprak, G. Aydin, B. Altinsoy, C. Altinkaynak, M. Kosar, and I. Ocsoy, “The Effect of Pelargonium endlicherianum Fenzl. root extracts on formation of nanoparticles and their antimicrobial activities,” Enzyme and Microbial Technology, vol. 97, pp. 21–26, Oct. 2016, doi: 10.1016/j.enzmictec.2016.10.019.

[12] R. Mariselvam, A. J. A. Ranjitsingh, A. Usha Raja Nanthini, K. Kalirajan, C. Padmalatha, and P. Mosae Selvakumar, “Green synthesis of silver nanoparticles from the extract of the inflorescence of Cocos nucifera (Family: Arecaceae) for enhanced antibacterial activity,” Spectrochimica Acta - Part A Molecular and Biomolecular Spectroscopy, vol. 129, pp. 537–541, Apr. 2014, doi: 10.1016/j.saa.2014.03.066.

[13] V. T. P. Vinod, P. Saravanan, B. Sreedhar, D. K. Devi, and R. B. Sashidhar, “A facile synthesis and characterization of Ag, Au and Pt nanoparticles using a natural hydrocolloid gum kondagogu (Cochlospermum gossypium),” Colloids Surfaces B Biointerfaces, vol. 83, no. 2, pp. 291–298, 2011, doi: 10.1016/j.colsurfb.2010.11.035.

[14] H. Amanda, A. Santoni, and D. Darwis, “Extraction and simple characterization of anthocyanin compounds from Rubus rosifolius Sm fruit,” Journal of Chemical and Pharmaceutical Research, vol. 7, no. 4, pp. 873–878, 2015.

[15] C. S. Bowen-Forbes, Y. Zhang, and M. G. Nair, “Anthocyanin content, antioxidant, anti-inflammatory and anticancer properties of blackberry and raspberry fruits,” Journal of Food Composition and Analysis, vol. 23, no. 6, pp. 554–560, 2010.

[16] S. Mallakpour and M. Hatami, “Green and ecofriendly route for the synthesis of Ag@Vitamin B9-LDH hybrid and its chitosan nanocomposites: Characterization and antibacterial activity,” Polymer, vol. 154, pp. 188–199, Jun. 2018, doi: 10.1016/j.polymer.2018.08.077.

[17] H. Padinjarathil, M. M. Joseph, B. S. Unnikrishnan, G. U. Preethi, R. Shiji, M. G. Archana, S. Maya, H. P. Syama, and T. T. Sreelekha, “Galactomannan endowed biogenic silver nanoparticles exposed enhanced cancer cytotoxicity with excellent biocompatibility,” International Journal of Biological Macromolecules, vol. 118, pp. 1174–1182, Jul. 2018, doi: 10.1016/j. ijbiomac.2018.06.194.

[18] D. Vollath, F. D. Fischer, and D. Fischer, “Surface energy of nanoparticles - influence of particle size and structure,” Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 2265–2276, Aug. 2018, doi: 10.3762/bjnano.9.211.

[19] D. Nayak, S. Ashe, P. R. Rauta, M. Kumari, and B. Nayak, “Bark extract mediated green synthesis of silver nanoparticles: Evaluation of antimicrobial activity and antiproliferative response against osteosarcoma,” Materials Science and Engineering C, vol. 58, pp. 44–52, 2016, doi: 10.1016/j.msec. 2015.08.022.

[20] N. Hashim, M. Paramasivam, J. S. Tan, D. Kernain, M. H. Hussin, N. Brosse, F. Gambier, and P. BothiRaja, “Green mode synthesis of silver nanoparticles using Vitis vinifera’s tannin and screening its antimicrobial activity/apoptotic potential versus cancer cells,” Materials Today Communications, vol. 25, Jul. 2020, doi: 10.1016/ j.mtcomm.2020.101511.

[21] W. R. Rolim, M. T. Pelegrino, B. de Araújo Lima, L. S. Ferraz, F. N. Costa, J. S. Bernardes, T. Rodigues, M. Brocchi, and A. B.Seabra, “Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity,” Applications of Surface Science, vol. 463, pp. 66–74, 2019, doi: 10.1016/j.apsusc.2018.08.203.

[22] J. K. Patra, S. H. Kim, H. Hwang, J. W. Choi, K. Baek, “Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (Pinus densiflora Siebold and Zucc.),” Molecules, vol. 20, pp. 3986–4006, Mar. 2015, doi: 10.3390/molecules20033986.

[23] N. J. Reddy, D. Nagoor Vali, M. Rani, and S. S. Rani, “Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticles by Piper longum fruit,” Materials Science and Engineering C, vol. 34, no. 1, pp. 115–122, 2014, doi: 10.1016/j.msec.2013.08.039.
[24] T. Campbell, C. Bowen-Forbes, and W. Aalbersberg, “Phytochemistry and biological activity of extracts of the red raspberry Rubus rosifolius,” presented at the International Conference on Nutritional and Nutraceutical Sciences, Singapore, Mar. 29–30, 2015.

[25] Y. Desmiaty, B. Elya, F. C. Saputri, M. Hanafi, and R. Prastiwi, “Antioxidant activity of Rubus fraxinifolius Poir. and Rubus rosifolius J. Sm. leaves,” Journal of Young Pharmacists, vol. 10, no. 2, pp. 93–96, 2018, doi: 10.5530/jyp.2018. 2s.18.

[26] A. Maciollek and H. Ritter, “One pot synthesis of silver nanoparticles using a cyclodextrin containing polymer as reductant and stabilizer,” Beilstein Journal of Nanotechnology, vol. 5, no. 1, pp. 380–385, Mar. 2014, doi:10.3762/ bjnano.5.44.
[27] M. M. Saber, S. B. Mirtajani, and K. Karimzadeh, “Green synthesis of silver nanoparticles using Trapa natans extract and their anticancer activity against A431 human skin cancer cells,” Journal of Drug Delivery Science and Technology, vol. 47, pp. 375–379, Aug. 2018, doi: 10.1016/j.jddst. 2018.08.004.

[28] L. Biao, S. Tan, X. Zhang, J. Gao, Z. Liu, and Y. Fu, “Synthesis and characterization of proanthocyanidins-functionalized Ag nanoparticles,” Colloids Surfaces B Biointerfaces, vol. 169, pp. 438–443, May 2018, doi: 10.1016/j. colsurfb.2018.05.050.

[29] A. Buccolieri, A. Serra, G. Giancane, and D. Manno, “Colloidal solution of silver nanoparticles for label-free colorimetric sensing of ammonia in aqueous solutions,” Beilstein Journal of Nanotechnology, vol. 9, no. 1, pp. 499–507, Feb. 2018, doi: 10.3762/bjnano.9.48.

[30] S. M. Ghaseminezhad and S. A. Shojaosadati, “Data on the role of starch and ammonia in green synthesis of silver and iron oxide nanoparticles,” Data in Brief, vol. 7, pp. 99–103, Mar. 2016, doi: 10.1016/j.carbpol.2016.03.007.

[31] T. Suwatthanarak, B. Than-Ardna, D. Danwanichakul, and P. Danwanichakul, “Synthesis of silver nanoparticles in skim natural rubber latex at room temperature,” Materials Letters, vol. 168, pp. 31–35, 2016, doi: 10.1016/j. matlet.2016.01.026.

[32] L. F. Gorup, E. Longo, E. R. Leite, and E. R. Camargo, “Moderating effect of ammonia on particle growth and stability of quasi-monodisperse silver nanoparticles synthesized by the Turkevich method,” Journal of Colloid and Interface Science, vol. 360, no. 2, pp. 355–358, May 2011, doi: 10.1016/j.jcis.2011.04.099.

[33] I. Ocsoy, A. Demirbas, E. S. McLamore, B. Altinsoy, N. Ildiz, and A. Baldemir, “Green synthesis with incorporated hydrothermal approaches for silver nanoparticles formation and enhanced antimicrobial activity against bacterial and fungal pathogens,” Journal of Molecular Liquids, vol. 238, pp. 263–269, May 2017, doi: 10.1016/j.molliq. 2017.05.012.

[34] S. K. Srikar, D. D. Giri, D. B. Pal, P. K. Mishra, and S. N. Upadhyay, “Green synthesis of silver nanoparticles: A review,” Green and Sustainable Chemistry, vol. 6, no. 1, Feb. 2016, doi: 10.4236/ gsc.2016.61004.

[35] K. Chitra and G. Annadurai, “Anti-bacterial activity of pH dependent biosynthesized silver nanoparticles against clinical pathogens,” Biomed Research International, vol. 2014, no. 725165, May 2014, doi:10.1155/2014/725165.

[36] P. S. Sadalage, R. V. Patil, M. N. Padvi, and K. D. Pawar, “Almond skin extract mediated optimally biosynthesized antibacterial silver T nanoparticles enable selective and sensitive colorimetric detection of Fe+2 ions,” Colloids and Surfaces B: Biointerfaces, vol. 193, p. 111084, Apr. 2020, doi: 10.1016/j.colsurfb.2020.111084.
[37] R. Sattari, G. R. Khayati, and R. Hoshyar, “Biosynthesis and characterization of silver nanoparticles capped by biomolecules by fumaria parviflora extract as green approach and evaluation of their cytotoxicity against human breast cancer MDA-MB-468 cell lines,” Materials Chemistry and Physics, vol. 241, p. 122438, 2020, doi: 10.1016/j.matchemphys.2019.122438.

[38] R. Kalaivani, M. Maruthupandy, T. Muneeswaran, A. H. Beevi, M. Anand, C. M. Ramakritinan, and A. K. Kumaraguru, “Synthesis of chitosan mediated silver nanoparticles (Ag NPs) for potential antimicrobial applications,” Frontiers in Laboratory Medicine, vol. 2, no. 1, pp. 30–35, Apr. 2018, doi: 10.1016/j.flm.2018.04.002.

[39] A. M. Oda, H. Abdulkadhim, S. I. A. Jabuk, R. Hashim, I. Fadhil, D. Alaa, and A. Kareem, “Green synthesis of silver nanoparticle by cauliflower extract: Characterisation and antibacterial activity against storage,” IET Nanobiotechnology, vol. 13, no. 5, pp. 1–6, Apr. 2019, doi: 10.1049/iet-nbt.2018.5095.

[40] E. Tomaszewska, K. Soliwoda, K. Kadziola, B. Tkacz-Szczesna, G. Celichowski, M. Cichomski, W. Szmaja, and J. Grobelny, “Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles,” Journal of Nanomaterials, vol. 2013, Jun. 2013, doi: 10.1155/2013/313081.

[41] Nanocomposix, “Zeta potential analysis of nanoparticles,” Nanocomposix, California, USA, Jan. 2020.

[42] M. Nasiriboroumand, M. Montazer, and H. Barani, “Preparation and characterization of biocompatible silver nanoparticles using pomegranate peel extract,” Journal of Photochemistry and Photobiology B: Biology, vol. 179, pp. 98–104, Jan. 2018, doi: 10.1016/j.jphotobiol.2018.01.006.

[43] M. Danaei, M. Dehghankhold, S. Ataei, F. H. Davarani, R. Javanmard, A. Dokhani, S. Khorasani, and M. R. Mozafari, “Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems,” Pharmaceutics, vol. 10, no. 2, pp. 1–17, May 2018, doi: 10.3390/ pharmaceutics10020057.

[44] M. Zia, S. Gul, J. Akhtar, I. Ul Haq, B. H. Abbasi, A. Hussain, S. Naz, and M. F. Chaudhary, “Green synthesis of silver nanoparticles from grape and tomato juices and evaluation of biological activities,” IET Nanobiotechnology, vol. 11, no. 2, pp. 193–199, 2017, doi: 10.1049/iet-nbt.2015.0099.
[45] E. Dogru, A. Demirbas, B. Altinsoy, F. Duman, and I. Ocsoy, “Formation of Matricaria chamomilla extract-incorporated Ag nanoparticles and sizedependent enhanced antimicrobial property,” Journal of Photochemistry and Photobiology B: Biology, vol. 174, pp. 78–83, Jul. 2017, doi: 10.1016/j.jphotobiol.2017.07.024.

[46] A. Virgen-Ortiz, S. Limón-Miranda, M. A. Soto- Covarrubias, A. Apolinar-Iribe, E. Rodríguez León, and R. Iñiguez-Palomares, “Biocompatible silver nanoparticles synthesized using Rumex hymenosepalus extract decreases fasting glucose levels in diabetic rats,” Digest Journal of Nanomaterials and Biostructures, vol. 10, no. 3, pp. 927–933, Sep. 2015.

[47] S. M. Magaña, P. Quintana, D. H. Aguilar, J. A. Toledo, C. Ángeles-Chávez, M. A. Cortés, L. León, Y. Freile-Pelegrín, T. López, and R. M. T. Sánchez, “Antibacterial activity of montmorillonites modified with silver,” Journal of Molecular Catalysis A: Chemical, vol. 281, no. 1–2, pp. 192–199, 2008, doi:10.1016/j.molcata. 2007.10.024.

[48] R. A. Hamouda, M. H. Hussein, R. A. Abo-elmagd, and S. S. Bawazir, “Synthesis and biological characterization of silver nanoparticles derived from the cyanobacterium Oscillatoria limnetica,” Scientific Reports, vol. 9, no. 1, pp. 1–17, Sep. 2019, doi: 10.1038/s41598-019-49444-y.
[49] A. Pawlak and M. Mucha, “Thermogravimetric and FTIR studies of chitosan blends,” Thermochimica Acta, vol. 396, pp. 153–166, Feb. 2003, doi: 10.1016/S0040-6031(02)00523-3.

[50] B. Kumar, K. Smita, L. Cumbal, and A. Debut. “Green synthesis of silver nanoparticles using Andean blackberry fruit extract,” Saudi Journal of Biological Sciences, vol. 24, no. 1, pp. 45–50, 2017, doi: 10.1016/j.sjbs.2015.09.006.

[51] N. D. A. Krupa and V. Raghavan, “Biosynthesis of silver nanoparticles using aegle marmelos (Bael) fruit extract and its application to prevent adhesion of bacteria: A strategy to control microfouling,” Bioinorganic Chemistry and Applications, vol. 2014, Sep. 2014, doi: 10.1155/2014/94958.

[52] M. Behravan, A. H. Panahi, A. Naghizadeh, M. Ziaee, R. Mahdavi, and A. Mirzapour, “Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity,” International Journal of Biological Macromolecules, vol. 124, pp. 148–154, 2019, doi: 10.1016/j.ijbiomac. 2018.11.101.

[53] S. L. Hitesh, “Green chemistry based synthesis of silver nanoparticles from floral extract of Nelumbo nucifera,” Materials Today: Proceedings, vol. 5, no. 2, pp. 6227–6233, 2018, doi: 10.1016/j. matpr.2017.12.231.

[54] B. Kumar, K. Smita, L. Cumbal, and A. Debut, “Green synthesis of silver nanoparticles using Andean blackberry fruit extract,” Saudi Journal of Biological Sciences, vol. 24, no. 1, pp. 45–50, Jan. 2017, doi: 10.1016/j.sjbs.2015.09.006.

[55] A. Demirbas, V. Yilmaz, N. Ildiz, A. Baldemir, and I. Ocsoy, “Anthocyanins-rich berry extracts directed formation of Ag NPs with the investigation of their antioxidant and antimicrobial activities,” Journal of Molecular Liquids, vol. 248, pp. 1044– 1049, Oct. 2017, doi: 10.1016/j.molliq.2017.10.130.
[56] F. S. AlQahtani, M. M. AlShebly, M. Govindarajan, S. Senthilmurugan, P. Vijayan, and G. Benelli, “Green and facile biosynthesis of silver nanocomposites using the aqueous extract of Rubus ellipticus leaves: Toxicity and oviposition deterrent activity against Zika virus, malaria and filariasis mosquito vectors,” Journal of Asia- Pacific Entomology, vol. 20, pp. 157–164, 2017, doi: 10.1016/j.aspen.2016.12.004.

Full Text: PDF

DOI: 10.14416/j.asep.2021.10.011

Refbacks

  • There are currently no refbacks.