Page Header Logo Applied Science and Engineering Progress

Rigid Polyurethane Foam Reinforced with Microfibrillated Cellulose from Oil Palm Empty Fruit Bunches as Efficient Thermal Insulation

Annisa Rifathin, Dwi Novriadi, Dwi Novriadi, Zarlina Zainuddin, Zarlina Zainuddin, Nanda Nagara, Nanda Nagara, Athanasia Amanda Septevani, Athanasia Amanda Septevani

Abstract


There is increasing interest in enhancing the thermal insulation of rigid polyurethane foam (RPUF) through a sustainable approach. This work presents the utilization of micro-sized biobased fillers, microfibrillated cellulose (MFC) derived from oil palm empty fruit bunches (EFB) waste, to improve the properties of RPUF composite as a potential insulation material. The inclusion of MFCEFB fillers at varied compositions (0.25–1 wt.%) in the RPUF composites demonstrated significant improvement of thermal insulation, as evidenced by their correlation with lower thermal conductivity, without compromising the mechanical properties compared to the control RPUF without MFCEFB. The results showed a decrease in the thermal conductivity of RPUF composite by 7.92% with the addition of 0.5 wt.% MFCEFB. The compressive strength also increased by 11.76% compared to the control RPUF. These enhancements were correlated to MFCEFB acting as a nucleating agent in the RPUF foaming process, where morphological analysis confirmed that the addition of MFCEFB resulted in smaller and more uniform cell sizes compared to the control RPUF. Fourier transform infra-red (FTIR) analysis revealed potential interactions between MFCEFB and polyurethane that could improve foam structural integrity. Moreover, the incorporation of MFCEFB at very low concentration had a negligible effect on the biodegradability compared to the RPUF control, demonstrating similar structural integrity to the control RPUF under natural environmental conditions, thereby ensuring the long-term durability of RPUF biocomposites.

Keywords



[1]      K. H. Choe, D. S. Lee, W. J. Seo, and W. N. Kim, “Properties of rigid polyurethane foams with blowing agents and catalysts,” Polymer Journal, vol. 36, no.5, pp. 368–373, May. 2004, doi: 10.1295/polymj.36.368.

[2]      S. Członka, A. Strąkowska, K. Strzelec, A. Adamus-Włodarczyk, A. Kairytė, and S. Vaitkus, “Composites of rigid polyurethane foams reinforced with POSS,” Polymers (Basel), vol. 11, no. 2, p. 336, Feb. 2019, doi: 10.3390/polym11020336.

[3]      Y. Li, H. Ren, and A. J. Ragauskas, “Rigid polyurethane foam/cellulose whisker nanocomposites: preparation, characterization, and properties,” Journal of Nanoscience and Nanotechnology, vol. 11, no. 8, pp. 6904–6911, Aug. 2011, doi: 10.1166/jnn.2011.3834.

[4]      W. Leng and B. Pan, “Thermal insulating and mechanical properties of cellulose nanofibrils modified polyurethane foam composite as structural insulated material,” Forests, vol. 10, no. 2, p. 200, Feb. 2019, doi: 10.3390/f10020200.

[5]      A. Rifathin et al., “Study on properties of rigid polyurethane foam as a thermal building insulator at varied mixing conditions,” IOP Confrence Series: Earth and Environmental Science, vol. 1201, no. 1, p. 012057, Jun. 2023, doi: 10.1088/1755-1315/1201/1/012057.

[6]      S. Paraschiv, L. S. Paraschiv, and A. Serban, “Increasing the energy efficiency of a building by thermal insulation to reduce the thermal load of the micro-combined cooling, heating and power system,” Energy Reports, vol. 7, pp. 286–298, Nov. 2021, doi: 10.1016/j.egyr.2021. 07.122.

[7]      A. A. Septevani, D. A. C. Evans, P. K. Annamalai, and D. J. Martin, “The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam,” Industrial Crops and Products, vol. 107, pp. 114–121, 2017, doi: 10.1016/j.indcrop.2017.05.039.

[8]      S. Estravís, J. Tirado-Mediavilla, M. Santiago-Calvo, J. L. Ruiz-Herrero, F. Villafañe, and M. Á. Rodríguez-Pérez, “Rigid polyurethane foams with infused nanoclays: relationship between cellular structure and thermal conductivity,” European Polymer Journal, vol. 80, pp. 1–15, Jul. 2016, doi: 10.1016/j.eurpolymj.2016.04.026.

[9]      M. C. Saha, Md. E. Kabir, and S. Jeelani, “Enhancement in thermal and mechanical properties of polyurethane foam infused with nanoparticles,” Materials Science and Engineering: A, vol. 479, no. 1–2, pp. 213–222, Apr. 2008, doi: 10.1016/j.msea.2007.06.060.

[10]    B. Notario, J. Pinto, E. Solorzano, J. A. de Saja, M. Dumon, and M. A. Rodríguez-Pérez, “Experimental validation of the Knudsen effect in nanocellular polymeric foams,” Polymer (Guildf), vol. 56, pp. 57–67, Jan. 2015, doi: 10.1016/j.polymer.2014.10.006.

[11]    A.P. de Moura et al., “Structural and mechanical characterization of polyurethane-CaCO3 composites synthesized at high calcium carbonate loading: An experimental and theoretical tudy,” Journal of Composite Materials, vol. 55, no. 21, pp. 2857–2866, Sep. 2021, doi: 10.1177/00219983 21996414.

[12]    K. M. You, S. S. Park, C. S. Lee, J. M. Kim, G. P. Park, and W. N. Kim, “Preparation and characterization of conductive carbon nanotube-polyurethane foam composites,” Journal of Material Science, vol. 46, No. 21, pp. 6850–6855, Nov. 2011, doi: 10.1007/s10853-011-5645-y.

[13]    A. A. Septevani, A. Rifathin, A. A. Sari, Y. Sampora, G. N. Ariani, Sudiyarmanto, and D. Sondari, “Oil palm empty fruit bunch-based nanocellulose as a super-adsorbent for water remediation,” Carbohydrate Polymers, vol. 229, p. 115433, Feb. 2020, doi: 10.1016/ j.carbpol.2019.115433.

[14]    A. Yousuf, D. Pirozzi, and F. Sannino, “Fundamentals of lignocellulosic biomass,” in Lignocellulosic Biomass to Liquid Biofuels. Elsevier, 2019, pp. 1–15, doi: 10.1016/B978-0-12-815936-1.00001-0.

[15]    M. Christwardana, A. S. Handayani, S. Savetlana, R. H. Lumingkewas, and M. Chalid, “Micro-Fibrillated cellulose fabrication from empty fruit bunches of oil palm,” Materials Science Forum, vol. 1000, pp. 272–277, 2020, doi: 10.4028/www.scientific.net/MSF.1000.272.

[16]    N. Reddy and Y. Yang, “Structure and properties of natural cellulose fibers obtained from sorghum leaves and stems,” Journal Agricultural and Food Chemistry, vol. 55, no. 14, pp. 5569–5574, Jul. 2007, doi: 10.1021/jf0707379.

[17]    L. J. Y. Jabber, J. C. Grumo, A. C. Alguno, A. A. Lubguban, and R. Y. Capangpangan, “Influence of cellulose fibers extracted from pineapple (Ananas comosus) leaf to the mechanical properties of rigid polyurethane foam,” Materials Today Proceedings, vol. 46, pp. 1735–1739, 2021, doi: 10.1016/j.matpr. 2020.07.566.

[18]    W. H. Danial, R. M. Taib, M. A. A. Samah, R. M. Salim, and Z. A. Majid, “The valorization of municipal grass waste for the extraction of cellulose nanocrystals,” RSC Advances, vol. 10, no. 69, pp. 42400–42407, 2020, doi: 10.1039/ d0ra07972c.

[19]    A. N. Roziafanto, M. Furqon, N. Sofyan, and M. Chalid, “Micro-fibrillated cellulose prepared from Sorghum bicolor (L.) moench by TEMPO-mediated oxidation treatment,” Springer Proceedings in Materials, vol. 21, pp. 9–16, 2023, doi: 10.1007/978-981-19-4290-7_2.

[20]    R. Vârban et al., “Comparative FT-IR prospecting for cellulose in stems of some fiber plants: flax, velvet leaf, hemp and jute,” Applied Sciences, vol. 11, no. 18, p. 8570, Sep. 2021, doi: 10.3390/ app11188570.

[21]    A. Abbasi, Y. Makhtoumi, Y. Wu, and G. Chen, “Characterization of cellulose nanocrystal extracted from household waste and its application for seed germination,” Carbohydrate Polymer Technologies and Applications, vol. 7, Jun. 2024, doi: 10.1016/j.carpta.2023.100409.

[22]    Y. Liu et al., “Effect of microcrystalline cellulose on the preparation and performance of rigid polyurethane foam,” Journal of Cellular Plastics, vol. 58, no. 5, pp. 739–755, Sep. 2022, doi: 10.1177/0021955X221089434.

[23]    A. A. Septevani, D. A. C. Evans, D. J. Martin, P. Song, and P. K. Annamalai, “Tuning the microstructure of polyurethane foam using nanocellulose for improved thermal insulation properties through an efficient dispersion methodology,” Polymer Composites, vol. 44, pp. 8857–8869, Sep. 2023, doi: 10.1002/pc.27743.

[24]    D. Dayanti et al., “Tuning rigid polyurethane foam with eco-friendly cellulose nanocrystals from oil palm empty fruit bunches as energy-efficient material composites for buildings,” Applied Science and Engineering Progress, vol. 17, no. 4, Sep. 2024, Art. no. 7544, doi: 10.14416/j.asep.2024.09.001.

[25]    I. W. Intara, I. M. Alit K. Salain, and N. M. Anom Wiryasa, “The use of stone dust as a partial replacement of ordinary portland cement,” Jurnal Spektran, Jan. 2013, doi: 10.24843/ SPEKTRAN.2013.v01.i01.p01.

[26]    C. K. A. Pandian, M. Thirumurugan, J. S. Parveen, and G. Rajesh, “3D fused deposition modelling of PLA/PBAT nanocomposites reinforced with GnP: mechanical and thermal characterizations,” Journal of Elastomers & Plastics, Apr. 2025, doi: 10.1177/00952443251 339798.

[27]    F. Yurid et al., “Production of nanocellulose using controlled acid hydrolysis from large-scale production of micro-fibrillated cellulose derived from oil palm empty fruit bunches,” IOP Confrence Series: Earth and Environmental Science, vol. 1201, no. 1, p. 012078, Jun. 2023, doi: 10.1088/1755-1315/ 1201/1/012078.

[28]    A. D. Nugroho et al., “Excellent hybrid polyurethane-graphite filler micro powder as a lightweight structure,” Journal of Composites Science, vol. 7, no. 10, p. 433, Oct. 2023, doi: 10.3390/jcs7100433.

[29]    I. Javni, W. Zhang, V. Karajkov, Z. S. Petrovic, and V. Divjakovic, “Effect of nano-and micro-silica fillers on polyurethane foam properties,” Journal of Cellular Plastics, vol. 38, no. 3, pp. 229–239, May 2002, doi: 10.1177/0021955X0 2038003139.

[30]    Y. Liu et al., “Effect of microcrystalline cellulose on the preparation and performance of rigid polyurethane foam,” Journal of Cellular Plastics, vol. 58, no. 5, pp. 739–755, Sep. 2022, doi: 10.1177/0021955X221089434.

[31]    T. Kattiyaboot and C. Thongpin, “Effect of natural oil based polyols on the properties of flexible polyurethane foams blown by distilled water,” Energy Procedia, vol. 89, pp. 177–185, 2016, doi: 10.1016/j.egypro.2016.05.024.

[32]    N. Kraitape and C. Thongpin, “Influence of recycled polyurethane polyol on the properties of flexible polyurethane foams,” Energy Procedia, vol. 89, pp. 186–197, 2016, doi: 10.1016/j.egypro.2016.05.025.

[33]    S. Ju et al., “Preventing the collapse behavior of polyurethane foams with the addition of cellulose nanofiber,” Polymers (Basel), vol. 15, no. 6, p. 1499, Mar. 2023, doi: 10.3390/polym 15061499.

[34]    M. Stanzione et al., “Tuning of polyurethane foam mechanical and thermal properties using ball-milled cellulose,” Carbohydrate Polymers, vol. 231, p. 115772, Mar. 2020, doi: 10.1016/ j.carbpol.2019.115772.

[35]    J. W. Kang et al., “Effects of nucleating agents on the morphological, mechanical and thermal insulating properties of rigid polyurethane foams,” Macromolecular Research, vol. 17, No. 11, pp. 856–862, Nov. 2009, doi: 10.1007/BF03 218626.

[36]    K. Uram, M. Kurańska, J. Andrzejewski, and A. Prociak, “Rigid polyurethane foams modified with biochar,” Materials, vol. 14, no. 19, p. 5616, Sep. 2021, doi: 10.3390/ma14195616.

[37]    R. B. Gimenez, L. Leonardi, P. Cerrutti, J. Amalvy, and L. M. Chiacchiarelli, “Improved specific thermomechanical properties of polyurethane nanocomposite foams based on castor oil and bacterial nanocellulose,” Journal of Applied Polymer Science, vol. 134, no. 25, Jul. 2017, doi: 10.1002/app.44982.

[38]    S. Ju et al., “Preventing the collapse behavior of polyurethane foams with the addition of cellulose nanofiber,” Polymers (Basel), vol. 15, no. 6, p. 1499, Mar. 2023, doi: 10.3390/polym 15061499.

[39]    P.-W. Peng et al., “Tuning the properties of bio-based thermoplastic polyurethane derived from polylactic acid by varying chain extenders and hard segment contents,” Journal of the Polymers and Environment, vol. 32, pp. 3119-3129, Jan. 2024, doi: 10.1007/s10924-023-03183-4.

[40]    L.C.C. Jesus et al., “Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/ polylactic acid composites,” Polymer Testing, vol. 113, Sep. 2022, doi: 10.1016/j.polymertesting.2022.107665.

[41]    Y. Tang, W. Zhang, X. Jiang, J. Zhao, W. Xie, and T. Chen, “Experimental investigations on phenomenological constitutive model of closed-cell PVC foam considering the effects of density, strain rate and anisotropy,” Composites Part B: Engineering, vol. 238, p. 109885, Jun. 2022, doi: 10.1016/j.compositesb.2022.109885.

[42]    A. A. Septevani et al., “Cellulosic nanomaterials for remediation of greenhouse effect,” in Green Synthesis of Nanomaterials, NJ : Wiley, 2024, pp. 228–247, doi: 10.1002/9781119900931.ch11.

[43]    M. Thirumal, D. Khastgir, N. K. Singha, B. S. Manjunath, and Y. P. Naik, “Mechanical, morphological and thermal properties of rigid polyurethane foam: Effect of the fillers,” Cellular Polymers, vol. 26, no. 4, pp. 245–259, Jul. 2007, doi: 10.1177/026248930702600402.

[44]    H. Haridevan, D. A. C. Evans, D. J. Martin, and P. K. Annamalai, “Dispersion engineering of cellulose nanofibres in polyols: For controlled microstructure of high-performance polyurethane foam,” Materials Advances, vol.5, pp. 1540–1551, 2024, doi: 10.1039/D3MA00865G.

[45]    M. I. Aranguren, I. Rácz, and N. E. Marcovich, “Microfoams based on castor oil polyurethanes and vegetable fibers,” Journal of Applied Polymer Science, vol. 105, no. 5, pp. 2791–2800, Sep. 2007, doi: 10.1002/app.26526.

[46]    M. Beaufils-Marquet, P. Blanchet, A. Hussain, and V. Landry, “Investigation of cellulose filaments as filler in rigid insulating polyurethane foam,” Bioresources, vol. 18, no. 3, pp. 6086–6117, Jul. 2023, doi: 10.15376/biores. 18.3.6086-6117.

[47]    H. Haridevan, D. A. C. Evans, A. J. Ragauskas, D. J. Martin, and P. K. Annamalai, “Valorisation of technical lignin in rigid polyurethane foam: A critical evaluation on trends, guidelines and future perspectives,” Nov. 21, 2021, Royal Society of Chemistry. doi: 10.1039/d1gc02744a.

[48]    A. K. Chaudhary and K. Jayaraman, “Extrusion of linear polypropylene–clay nanocomposite foams,” Polymer Engineering and Science, vol. 51, no. 9, pp. 1749–1756, Sep. 2011, doi: 10.1002/pen.21961.

[49]    A. Lorenzetti, M. Roso, A. Bruschetta, C. Boaretti, and M. Modesti, “Polyurethane-graphene nanocomposite foams with enhanced thermal insulating properties,” Polymers Advanced Technologies, vol. 27, no. 3, pp. 303–307, Mar. 2016, doi: 10.1002/pat.3635.

[50]    S. B. Murmu, “Alternatives derived from renewable natural fibre to replace conventional polyurethane rigid foam insulation,” Cleaner Engineering and Technology, vol. 8, p. 100513, Jun. 2022, doi: 10.1016/j.clet.2022.100513.

[51]    X. Luo, Y. Xiao, Q. Wu, and J. Zeng, “Development of high-performance biodegradable rigid polyurethane foams using all bioresource-based polyols: lignin and soy oil-derived polyols,” International Journal of Biological Macromolecules, vol. 115, pp. 786–791, Aug. 2018, doi: 10.1016/j.ijbiomac.2018.04.126.

[52]    L. M. G. Manzano, M. Á. R. Cruz, N. M. Moo Tun, A. V. González, and J. H. M. Hernandez, “Effect of cellulose and cellulose nanocrystal contents on the biodegradation, under composting conditions, of hierarchical PLA biocomposites,” Polymers (Basel), vol. 13, no. 11, Jun. 2021, doi: 10.3390/polym13111855.

[53]    B. Tajeddin, A. Russly, and N. Azowa, “Effect of PEG on the biodegradability studies of kenaf cellulose -polyethylene composites,” International Food Research Journal, vol. 16, pp. 243–247, Apr. 2020.

[54]    X. Qi, Y. Zhang, C. Chang, X. Luo, and Y. Li, “Thermal, mechanical, and morphological properties of rigid crude glycerol‐based polyurethane foams reinforced with nanoclay and microcrystalline cellulose,” European Journal of Lipid Science and Technology, vol. 120, no. 5, May 2018, doi: 10.1002/ejlt.201700413.

[55]    S. Polimera, A. Gali, S. K. Nath, A. Rahaman, M. R. Chandan, and S. J. Balakumaran, “Thermo‐mechanical property enhancement of rigid polyurethane foam using silica and alumina as hybrid fillers over single filler,” Polymer Composites, vol. 44, no. 10, pp. 6454–6466, Oct. 2023, doi: 10.1002/pc.27570.

Full Text: PDF

DOI: 10.14416/j.asep.2025.12.002

Refbacks

  • There are currently no refbacks.