Page Header Logo Applied Science and Engineering Progress

Mitigation of Enteric Methane Emission from Ruminant by Bioactive Compounds of Rhodomyrtus tomentosa: In Silico and In Vitro Studies

Sigit Puspito, Asih Kurniawati, Hafi Luthfi Sanjaya, Muhlisin Muhlisin, Muhsin Al Anas, Bambang Suwignyo, Yenny Nu Anggraeny, Setiasih Setiasih, Wardi Wardi, Slamet Widodo, Bambang Haryanto, Noor Hudhia Krishna, Fernando Berton Zanchi

Abstract


The livestock sector significantly contributes to greenhouse gas emissions, primarily methane (CH4) from enteric fermentation in ruminants. Methanogenesis in ruminants is facilitated by hydrogenotrophic methanogens and the key enzyme, namely Methyl Coenzyme Reductase (MCR). This study explores the potential of bioactive compounds derived from Rhodomyrtus tomentosa as MCR enzyme inhibitors to mitigate methane emissions. Twelve bioactive compounds were selected for in silico molecular docking against the MCR enzyme. Docking results indicated Rhodomyrtone, Tomentodione E, and Myricetin had the highest binding affinities with binding affinities of -9.5, -8.7, and -8.3 kcal/mol, respectively, outperforming the natural substrate Coenzyme B. ADMET predictions confirmed the drug-likeness and safety profiles of these compounds. Rhodomyrtone was further subjected to molecular dynamics (MD) simulations, demonstrating stable interactions with MCR, indicated by consistent RMSD, RMSF, and Rg values. An in vitro gas production technique evaluated Rhodomyrtone's efficacy in reducing methane emissions, using doses of 0.125 and 0.25 µg/ml. Results showed a non-significant reduction of 10% in methane production, suggesting the need for optimized dosing. This study highlights rhodomyrtone as a promising anti-methanogen agent, with potential implications for reducing methane emissions from ruminants. Future research should focus on dose optimization and the exploration of synergistic effects with other anti-methanogenic compounds to maximize methane reduction.


Keywords



[1] Food and Agriculture Organization (FAO), Methane Emissions in Livestock and Rice Systems. Rome, Italy: FAO, 2023, doi: 10.4060/cc7607en.

[2]    A. M. Dlamini and M. A. Dube, “Contribution of animal agriculture to greenhouse gases production in Swaziland,” American Journal of Climate Change, vol. 3, no. 3, pp. 253–260, 2014, doi: 10.4236/ajcc.2014.33024.

[3]    M. M. Rojas-Downing, A. P. Nejadhashemi, T. Harrigan, and S. A. Woznicki, “Climate change and livestock: Impacts, adaptation, and mitigation,” Climate Risk Management, vol. 16, pp. 145–163, 2017, doi: 10.1016/j.crm.2017.02. 001.

[4]    KLHK, Laporan Inventarisasi GRK 2020 dan Monitoring, Pelaporan, Verifikasi (MPV), Kementerian Lingkungan Hidup dan Kehutanan, pp. 1–143, 2020.

[5]    A. Chaokaur, T. Nishida, I. Phaowphaisal, and K. Sommart, “Effects of feeding level on methane emissions and energy utilization of Brahman cattle in the tropics,” Agriculture, Ecosystems & Environment, vol. 199, pp. 225–230, 2015, doi: 10.1016/j.agee.2014.09.014.

[6]    B. H. Khairunisa, C. Heryakusuma, K. Ike, B. Mukhopadhyay, and D. Susanti, “Evolving understanding of rumen methanogen ecophysiology,” Frontiers in Microbiology, vol. 14, Nov. 2023, doi: 10.3389/fmicb.2023.1296008.

[7]    M. B. Eisen and P. O. Brown, “Rapid global phaseout of animal agriculture has the potential to stabilize greenhouse gas levels for 30 years and offset 68 percent of CO₂ emissions this century,” PLOS Climate, vol. 1, no. 2, p. e0000010, Feb. 2022, doi: 10.1371/journal.pclm. 0000010.

[8]    K. Singh et al., “Molecular identification of methanogenic archaea from Surti buffaloes (Bubalus bubalis) reveals more hydrogenotrophic methanogen phylotypes,” Brazilian Journal of Microbiology, vol. 42, no. 1, pp. 132–139, Mar. 2011, doi: 10.1590/S1517-83822011000100017.

[9]    A. Patra, T. Park, M. Kim, and Z. Yu, “Rumen methanogens and mitigation of methane emission by anti-methanogenic compounds and substances,” Journal of Animal Science and Biotechnology, vol. 8, no. 1, p. 13, Dec. 2017, doi: 10.1186/s40104-017-0145-9.

[10]  H. Chen, Q. Gan, and C. Fan, “Methyl-coenzyme M reductase and its post-translational modifications,” Frontiers in Microbiology, vol. 11, Oct. 2020, doi: 10.3389/fmicb.2020.578356.

[11]  A. Gendron and K. D. Allen, “Overview of diverse methyl/alkyl-coenzyme M reductases and considerations for their potential heterologous expression,” Frontiers in Microbiology, vol. 13, Apr. 2022, doi: 10.3389/fmicb.2022.867342.

[12]  J. C. Ku-Vera et al., “Role of secondary plant metabolites on enteric methane mitigation in ruminants,” Frontiers in Veterinary Science, vol. 7, Aug. 2020, doi: 10.3389/fvets.2020.00584.

[13]  C. Narabe et al., “Cashew nut shell liquid potentially mitigates methane emission from the feces of Thai native ruminant livestock by modifying fecal microbiota,” Animal Science Journal, vol. 92, no. 1, Jan. 2021, doi: 10.1111/ asj.13614.

[14]  Y.-L. Zhang et al., “Isolation, structure elucidation, and absolute configuration of syncarpic acid-conjugated terpenoids from Rhodomyrtus tomentosa,” Journal of Natural Products, vol. 80, no. 4, pp. 989–998, Apr. 2017, doi: 10.1021/ acs.jnatprod.6b01005.

[15]  D. Jeong et al., “In vitro and in vivo anti-inflammatory effect of Rhodomyrtus tomentosa methanol extract,” Journal of Ethnopharmacology, vol. 146, no. 1, pp. 205–213, Mar. 2013, doi: 10.1016/j.jep.2012.12.034.

[16]  Q. N. Bach et al., “Antimicrobial activity of rhodomyrtone isolated from Rhodomyrtus tomentosa (Aiton) Hassk,” Natural Product Research, vol. 34, no. 17, pp. 2518–2523, Sep. 2020, doi: 10.1080/14786419.2018.1540479.

[17]  O. F. Nwabor, S. Leejae, and S. P. Voravuthikunchai, “Rhodomyrtone accumulates in bacterial cell wall and cell membrane and inhibits the synthesis of multiple cellular macromolecules in epidemic methicillin-resistant Staphylococcus aureus,” Antibiotics, vol. 10, no. 5, 2021, doi: 10.3390/antibiotics10050543.

[18]  S. Wunnoo, J. Saising, and S. P. Voravuthikunchai, “Rhodomyrtone inhibits lipase production, biofilm formation, and disorganizes established biofilm in Propionibacterium acnes,” Anaerobe, vol. 43, pp. 61–68, Feb. 2017, doi: 10.1016/ j.anaerobe.2016.12.002.

[19]  H.-X. Liu et al., “Rhodomentones A and B, novel meroterpenoids with unique NMR characteristics from Rhodomyrtus tomentosa,” Organic & Biomolecular Chemistry, vol. 14, no. 30, pp. 7354–7360, 2016, doi: 10.1039/C6OB01215A.

[20]  W. Mitsuwan, P. Wintachai, and S. P. Voravuthikunchai, “Rhodomyrtus tomentosa leaf extract and rhodomyrtone combat Streptococcus pneumoniae biofilm and inhibit invasiveness to human lung epithelial and enhance pneumococcal phagocytosis by macrophage,” Current Microbiology, vol. 77, no. 11, pp. 3546–3554, Nov. 2020, doi: 10.1007/ s00284-020-02164-3.

[21]  S. Puspito et al., “Phytochemical diversity, rhodomyrtone content, nutrient content, and antioxidant efficacy in keramunting leaves from Belitung Island, Indonesia: A comparative study of different solvent extraction methods,” Case Studies in Chemical and Environmental Engineering, vol. 10, Jun. 2024, p. 100874, doi: 10.1016/j.cscee.2024.100874.

[22]  L. D. Saravolatz and J. Pawlak, “Rhodomyrtone: A new anti-Staphylococcus aureus agent against resistant strains,” JAC-Antimicrobial Resistance, vol. 6, no. 4, pp. 1–4, 2024, doi: 10.1093/jacamr/ dlae097.

[23]  W. R. Mir et al., “Molecular docking analysis and evaluation of the antimicrobial properties of the constituents of Geranium wallichianum D. Don ex Sweet from Kashmir Himalaya,” Scientific Reports, vol. 12, no. 1, p. 12547, Jul. 2022, doi: 10.1038/s41598-022-16102-9.

[24]  Dachriyanus et al., “Rhodomyrtone, an antibiotic from Rhodomyrtus tomentosa,” Australian Journal of Chemistry, vol. 55, no. 3, pp. 229–232, 2002, doi: 10.1071/CH01194.

[25]  A. Gervais, K. E. Lazarski, and J. A. Porco, “Divergent total syntheses of rhodomyrtosones A and B,” Journal of Organic Chemistry, vol. 80, no. 19, pp. 9584–9591, Oct. 2015, doi: 10.1021/ acs.joc.5b01570.

[26]  A. Hiranrat, W. Mahabusarakam, A. R. Carroll, S. Duffy, and V. M. Avery, “Tomentosones A and B, hexacyclic phloroglucinol derivatives from the Thai shrub Rhodomyrtus tomentosa,” Journal of Organic Chemistry, vol. 77, no. 1, pp. 680–683, Jan. 2012, doi: 10.1021/jo201602y.

[27]  L. Yanze, H. Aijun, J. Chunru, and W. Yangjie, “Isolation and structure of hydrolysable tannins from Rhodomyrtus tomentosa,” Natural Product Research and Development, vol. 10, no. 1, pp. 14–19, 1998.

[28]  Y.-L. Zhang et al., “Rhodomyrtials A and B, two meroterpenoids with a triketone–sesquiterpene–triketone skeleton from Rhodomyrtus tomentosa: Structural elucidation and biomimetic synthesis,” Organic Letters, vol. 18, no. 16, pp. 4068–4071, Aug. 2016, doi: 10.1021/acs.orglett.6b01944.

[29]  H.-X. Liu, H.-B. Tan, and S.-X. Qiu, “Antimicrobial acylphloroglucinols from the leaves of Rhodomyrtus tomentosa,” Journal of Asian Natural Products Research, vol. 18, no. 6, pp. 535–541, Jun. 2016, doi: 10.1080/10286020. 2015.1121997.

[30]  T. Vo and D. Ngo, “The health beneficial properties of Rhodomyrtus tomentosa as potential functional food,” Biomolecules, vol. 9, no. 2, p. 76, Feb. 2019, doi: 10.3390/biom 9020076.

[31] H. Wai-Haan and L. Man-Moon, “Two new triterpenoids from Rhodomyrtus tomentosa,” Phytochemistry, vol. 15, no. 11, pp. 1741–1743, Jan. 1976, doi: 10.1016/S0031-9422(00)97468-5.

[32] T. Wongnate and S. W. Ragsdale, “The reaction mechanism of methyl-coenzyme M reductase,” Journal of Biological Chemistry, vol. 290, no. 15, pp. 9322–9334, Apr. 2015, doi: 10.1074/ jbc.M115.636761.

[33] M. Nabil, R. Alam, Q. A. Rahman, M. M. Ul Islam, and M. A. A. Noor, “In silico molecular docking study of some already approved antiviral drugs, vitamins and phytochemical components against RNA dependent RNA polymerase of SARS-CoV-2 virus,” Journal of Applied Bioinformatics and Computational Biology, vol. 9, no. 5, 2020, doi: 10.37532/jabcb. 2020.9(5).182.

[34]  A. Daina, O. Michielin, and V. Zoete, “SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Scientific Reports, vol. 7, no. 1, p. 42717, Mar. 2017, doi: 10.1038/srep42717.

[35] P. Banerjee, A. O. Eckert, A. K. Schrey, and R. Preissner, “ProTox-II: A webserver for the prediction of toxicity of chemicals,” Nucleic Acids Research, vol. 46, no. W1, pp. W257–W263, Jul. 2018, doi: 10.1093/nar/gky318.

[36] W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, “Comparison of simple potential functions for simulating liquid water,” Journal of Chemical Physics, vol. 79, no. 2, pp. 926–935, Jul. 1983, doi: 10.1063/1.445869.

[37] I. H. P. Vieira, E. B. Botelho, T. J. de Souza Gomes, R. Kist, R. A. Caceres, and F. B. Zanchi, “Visual dynamics: A web application for molecular dynamics simulation using GROMACS,” BMC Bioinformatics, vol. 24, no. 1, p. 107, Mar. 2023, doi: 10.1186/s12859-023-05234-y.

[38] L. Kagami, A. Wilter, A. Diaz, and W. Vranken, “The ACPYPE web server for small-molecule MD topology generation,” Bioinformatics, vol. 39, no. 6, Jun. 2023, doi: 10.1093/bioinformatics/ btad350.

[39] K. H. Menke, L. Raab, A. Salewski, H. Steingass, D. Fritz, and W. Schneider, “The estimation of the digestibility and metabolizable energy content of ruminant feedingstuffs from the gas production when they are incubated with rumen liquor in vitro,” Journal of Agricultural Science, vol. 93, no. 1, pp. 217–222, 1979, doi: 10.1017/S0021859600086305.

[40] N. Shao et al., “Expression of divergent methyl/alkyl coenzyme M reductases from uncultured archaea,” Communications Biology, vol. 5, no. 1, 2022, doi: 10.1038/s42003-022-04057-6.

[41] T. Wagner, C.-E. Wegner, J. Kahnt, U. Ermler, and S. Shima, “Phylogenetic and structural comparisons of the three types of methyl coenzyme M reductase from Methanococcales and Methanobacteriales,” Journal of Bacteriology, vol. 199, no. 16, Aug. 2017, doi: 10.1128/ JB.00197-17.

[42] R. K. Thauer, “Methyl (alkyl)-coenzyme M reductases: Nickel F-430-containing enzymes involved in anaerobic methane formation and in anaerobic oxidation of methane or of short chain alkanes,” Biochemistry, vol. 58, no. 52, pp. 5198–5220, Dec. 2019, doi: 10.1021/acs. biochem.9b00164.

[43] Z. Lyu, N. Shao, T. Akinyemi, and W. B. Whitman, “Methanogenesis,” Current Biology, vol. 28, no. 13, pp. R727–R732, Jul. 2018, doi: 10.1016/j.cub.2018.05.021.

[44] M. C. Vlasiou and K. S. Pafti, “Screening possible drug molecules for COVID-19: The example of vanadium (III/IV/V) complex molecules with computational chemistry and molecular docking,” Computational Toxicology, vol. 18, p. 100157, May 2021, doi: 10.1016/ j.comtox.2021.100157.

[45] J. M. Paggi, A. Pandit, and R. O. Dror, “The art and science of molecular docking,” Annual Review of Biochemistry, vol. 93, no. 1, pp. 389–410, Aug. 2024, doi: 10.1146/annurev-biochem-030222-120000.

[46] I. N. Fitriani and H. M. Ansory, “Molecular docking study of nutmeg (Myristica fragrans) constituents as anti-skin cancer agents,” JKPK (Jurnal Kimia dan Pendidikan Kimia), vol. 6, no. 1, p. 14, Apr. 2021, doi: 10.20961/jkpk.v6i1. 47223.

[47] F. Rahman, S. Tabrez, R. Ali, A. S. Alqahtani, M. Z. Ahmed, and A. Rub, “Molecular docking analysis of rutin reveals possible inhibition of SARS-CoV-2 vital proteins,” Journal of Traditional and Complementary Medicine, vol. 11, no. 2, pp. 173–179, Mar. 2021, doi: 10.1016/ j.jtcme.2021.01.006.

[48] G. G. Ferenczy and M. Kellermayer, “Contribution of hydrophobic interactions to protein mechanical stability,” Computational and Structural Biotechnology Journal, vol. 20, pp. 1946–1956, 2022, doi: 10.1016/j.csbj.2022.04.025.

[49] S. J. Grabowski, Understanding Hydrogen Bonds: Theoretical and Experimental Views. Cambridge, UK: Royal Society of Chemistry, 2020.

[50] A. Madushanka, R. T. Moura, N. Verma, and E. Kraka, “Quantum mechanical assessment of protein–ligand hydrogen bond strength patterns: Insights from semiempirical tight-binding and local vibrational mode theory,” International Journal of Molecular Sciences, vol. 24, no. 7, p. 6311, Mar. 2023, doi: 10.3390/ijms24076311.

[51] F. K. Malik and J. Guo, “Insights into protein–DNA interactions from hydrogen bond energy‐based comparative protein–ligand analyses,” PROTEINS: Structure, Function, and Bioinformatics, vol. 90, no. 6, pp. 1303–1314, Jun. 2022, doi: 10.1002/prot.26313.

[52] A. Abelian, M. Dybek, J. Wallach, B. Gaye, and A. Adejare, “Pharmaceutical chemistry,” in Remington, Amsterdam, Netherlands: Elsevier, 2021, pp. 105–128.

[53] T. E. Tallei et al., “Potential of plant bioactive compounds as SARS-CoV-2 main protease (Mpro) and spike (S) glycoprotein inhibitors: A molecular docking study,” Scientifica (Cairo), vol. 2020, pp. 1–18, Dec. 2020, doi: 10.1155/ 2020/6307457.

[54] G. Sanger et al., “Green seaweed Caulerpa racemosa – Chemical constituents, cytotoxicity in breast cancer cells and molecular docking simulation,” Journal of Agricultural and Food Research, vol. 12, p. 100621, Jun. 2023, doi: 10.1016/j.jafr.2023.100621.

[55] M. M. Hasan et al., “In silico molecular docking and ADME/T analysis of quercetin compound with its evaluation of broad-spectrum therapeutic potential against particular diseases,” Informatics in Medicine Unlocked, vol. 29, p. 100894, 2022, doi: 10.1016/j.imu.2022.100894.

[56] M. D. Shultz, “Two decades under the influence of the rule of five and the changing properties of approved oral drugs,” Journal of Medicinal Chemistry, vol. 62, no. 4, pp. 1701–1714, Feb. 2019, doi: 10.1021/acs.jmedchem.8b00686.

[57] H. Amat-ur-Rasool et al., “In silico design of dual-binding site anti-cholinesterase phytochemical heterodimers as treatment options for Alzheimer’s disease,” Current Issues in Molecular Biology, vol. 44, no. 1, pp. 152–175, 2022, doi: 10.3390/cimb44010012.

[58] S. K. Halder et al., “In silico identification and analysis of potentially bioactive antiviral phytochemicals against SARS-CoV-2: A molecular docking and dynamics simulation approach,” BioMed Research International, vol. 2023, pp. 1–32, May 2023, doi: 10.1155/2023/ 5469258.

[59] J. Aghajani et al., “Molecular dynamic simulations and molecular docking as a potential way for designed new inhibitor drug without resistance,” Tanaffos, vol. 21, no. 1, pp. 1–14, 2022.

[60] K. Sargsyan, C. Grauffel, and C. Lim, “How molecular size impacts RMSD applications in molecular dynamics simulations,” Journal of Chemical Theory and Computation, vol. 13, no. 4, pp. 1518–1524, Apr. 2017, doi: 10.1021/acs. jctc.7b00028.

[61] P. Bisht et al., “Designing of xanthine-based DPP-4 inhibitors: a structure-guided alignment dependent multifacet 3D-QSAR modeling, and molecular dynamics simulation study,” Journal of Biomolecular Structure and Dynamics, pp. 1–25, May 2024, doi: 10.1080/07391102.2024. 2329787.

[62] H. A. Oyewusi et al., “Bioinformatics analysis and molecular dynamics simulations of azoreductases (AzrBmH2) from Bacillus megaterium H2 for the decolorization of commercial dyes,” Environmental Sciences Europe, vol. 36, no. 1, p. 31, Feb. 2024, doi: 10.1186/s12302-024-00853-5.

[63] A. Shrestha et al., “Molecular docking and dynamics simulation of several flavonoids predict cyanidin as an effective drug candidate against SARS-CoV-2 spike protein,” Advances in Pharmacology and Pharmaceutical Sciences, vol. 2022, pp. 1–13, Nov. 2022, doi: 10.1155/ 2022/3742318.

[64] D.-D. Li et al., “Molecular dynamics analysis of binding sites of epidermal growth factor receptor kinase inhibitors,” ACS Omega, vol. 5, no. 26, pp. 16307–16314, Jul. 2020, doi: 10.1021/ acsomega.0c02183.

[65] A. M. da Fonseca et al., “Screening of potential inhibitors targeting the main protease structure of SARS-CoV-2 via molecular docking, and approach with molecular dynamics, RMSD, RMSF, H-bond, SASA and MMGBSA,” Molecular Biotechnology, Jul. 2023, doi: 10.1007/s12033-023-00831-x.

[66] A. A. Al-Karmalawy et al., “Molecular docking and dynamics simulation revealed the potential inhibitory activity of ACEIs against SARS-CoV-2 targeting the hACE2 receptor,” Frontiers in Chemistry, vol. 9, p. 661230, 2021, doi: 10.3389/ fchem.2021.661230.

[67] O. M. H. Salo-Ahen et al., “Molecular dynamics simulations in drug discovery and pharmaceutical development,” Processes, vol. 9, no. 1, p. 71, 2021, doi: 10.3390/pr9010071.

[68] V. Palangi, M. Macit, H. Nadaroglu, and A. Taghizadeh, “Effects of green-synthesized CuO and ZnO nanoparticles on ruminal mitigation of methane emission to the enhancement of the cleaner environment,” Biomass Conversion and Biorefinery, 2022, doi: 10.1007/s13399-022-02775-9.

[69] D. K. Dhanasekaran et al., “Plants extract and bioactive compounds on rumen methanogenesis,” Agroforestry Systems, vol. 94, pp. 1541–1553, 2020, doi: 10.1007/s10457-019-00411-6.

[70] N. F. Sari, P. Ray, C. Rymer, K. E. Kliem, and S. Stergiadis, “Garlic and its bioactive compounds: Implications for methane emissions and ruminant nutrition,” Animals, vol. 12, no. 2998, pp. 1–33, 2022, doi: 10.3390/ani12212998.

[71] A. K. Patra and R. Puchala, “Methane mitigation in ruminants with structural analogues and other chemical compounds targeting archaeal methanogenesis pathways,” Biotechnology Advances, vol. 69, p. 108268, 2023, doi: 10.1016/j.biotechadv.2023.108268.

[72] O. F. Nwabor, S. Leejae, and S. P. Voravuthikunchai, “Rhodomyrtone accumulates in bacterial cell wall and cell membrane and inhibits the synthesis of multiple cellular macromolecules in epidemic methicillin-resistant Staphylococcus aureus,” Antibiotics, vol. 10, no. 5, 2021, doi: 10.3390/antibiotics 10050543.

[73] Y. Dinakarkumar et al., “Anti-methanogenic effect of phytochemicals on methyl-coenzyme M reductase—potential: In silico and molecular docking studies for environmental protection,” Micromachines, vol. 12, no. 11, 2021, doi: 10.3390/mi12111425.

[74] V. Palangi and M. Lackner, “Management of enteric methane emissions in ruminants using feed additives: A review,” Animals, vol. 12, no. 24, pp. 1–15, 2022, doi: 10.3390/ani12243452.

[75] S. Yu et al., “Flavonoids from citrus peel display potential synergistic effects on inhibiting rumen methanogenesis and ammoniagenesis: A microbiome perspective,” Environmental Science and Pollution Research, vol. 31, pp. 21208–21223, 2024, doi: 10.1007/s11356-024-32509-5.

[76] F. Hassan et al., “Phytogenic additives can modulate rumen microbiome to mediate fermentation kinetics and methanogenesis through exploiting diet–microbe interaction,” Frontiers in Veterinary Science, vol. 7, p. 575801, 2020, doi: 10.3389/fvets.2020.575801.

[77] Z. Teng et al., “Tea polyphenols inhibit methanogenesis and improve rumen epithelial transport in dairy cows,” Animals (Basel), vol. 14, no. 17, p. 2569, Sep. 2024, doi: 10.3390/ani 14172569.

[78] T. Tseten, R. A. Sanjorjo, M. Kwon, and S. W. Kim, “Strategies to mitigate enteric methane emissions from ruminant animals,” Journal of Microbiology and Biotechnology, vol. 32, no. 3, pp. 269–277, 2022, doi: 10.4014/jmb.2202.02019.

Full Text: PDF

DOI: 10.14416/j.asep.2025.12.005

Refbacks

  • There are currently no refbacks.