Shear Behavior of Ultra-High-Performance Concrete Shear Pockets with Large-sized Studs in Full-Depth Precast Concrete Bridge Deck under Push-off Tests
Abstract
Keywords
[1] K. E. Hanna, G. Morcous, and M. K. Tadros, “Rapid construction of Pacific Street Bridge,” SPR-PL-1 (037) P587, 2010.
[2] K. E. Hanna, G. Morcous, and M. K. Tadros, “Standardized precast prestressed concrete panels for bridge decks,” in Proceedings of the Concrete Bridge Conference, 2008.
[3] F. Menkulasi and C. L. Roberts-Wollmann, “Behavior of horizontal shear connections for full-depth precast concrete bridge decks on prestressed I-girders,” PCI Journal, vol. 50, no. 3, pp. 60–73, 2005.
[4] S. S. Badie, A. F. M. Girgis, M. K. Tadros, and K. Sriboonma, “Full-Scale testing for composite slab/beam systems made with extended stud spacing,” American Society of Civil Engineers (ASCE), Journal of Bridge Engineering, vol. 16, no. 5, pp. 653–661, 2011.
[5] M. A. Issa, J. S. Salas, H. I. Shabila, and R. Z. Alrousan, “Composite behavior of full-depth precast slabs installed on precast prestressed girders,” PCI Journal, vol. 51, no. 5, pp. 132–145, 2006.
[6] K. Sriboonma and S. S. Badie, “Practical steel confinements for widely spaced clustered large stud shear connectors in composite bridge deck panel systems,” in Proceedings of the Steel Conference and Structures Congress (NASCC), Florida, USA, May 12–15, 2010.
[7] ASTM C1856-17: Standard Practice for Fabricating and Testing Specimens of Ultra-High Performance Concrete, ASTM International, West Conshohocken, PA, USA, 2017.
[8] B. A. Graybeal, “Material property characterization of ultra-high performance concrete,” FHWA-HRT-06-103, Federal Highway Administration, McLean, VA, USA, Aug. 2006.
[9] Z. Fang, H. Jiang, J. Xiao, X. Dong, and T. Shao, “Shear performance of UHPC-filled pocket connection between precast UHPC girders and full-depth precast concrete slabs,” Structures, vol. 29, pp. 328–338, Feb. 2021.
[10] J. Q. Wang, J. N. Qi, T. Tong, Q. Z. Xu, and H. L. Xiu, “Static behavior of large stud shear connectors in steel–UHPC composite structures,” Engineering Structures, vol. 178, pp. 534–542, 2019.
[11] C. Muñoz, A. Miguel, D. K. Harris, T. M. Ahlborn, and D. C. Froster, “Bond performance between ultrahigh-performance concrete and normal-strength concrete,” Journal of Materials in Civil Engineering, vol. 26, no. 8, p. 04014031, 2014.
[12] P. Wongtala, N. Chaimoon, N. Khomwan, and K. Chaimoon, “Experimental and numerical study on structural behavior of reactive powder concrete corbels without stirrups,” Case Studies in Construction Materials, vol. 19, p. e02372, 2023.
[13] M. Al-Rousan, R. Hasan, and Y. Al-Rimawi, “The influence of prestress level on the behavior of prefabricated full-depth precast bridge decks,” Case Studies in Construction Materials, vol. 19, p. e02307, 2023, doi: 10.1016/j.cscm.2023.e02307.
[14] Z. Xiong, L. Feng, Y. Zou, X. Wang, and W. Huang, “Experimental study of high-strength steel–precast prestressed concrete composite beams under hogging moment,” Journal of Constructional Steel Research, vol. 211, 2024, Art. no. 108784, doi: 10.1016/j.jcsr.2024.108784.
[15] G. Wang, B. Xian, F. Ma, and S. Fang, “Shear performance of prefabricated steel–UHPC connections,” Buildings, vol. 14, no. 8, 2024, Art. no 2425, doi: 10.3390/buildings14082425.
[16] A. Stefaniuk, A. Bąk, and K. Flaga, “Full-scale testing of UHPC deck systems with studs in shear pockets,” Engineering Structures, vol. 301, 2024, Art. no. 117339, doi: 10.1016/j.engstruct. 2024.117339.
[17] Y. Jiang, S. Fang, F. Ma, and B. Xian, “Shear performance of headless studs in UHPC,” Frontiers in Materials, vol. 11, 2024, Art. no. 1451240, doi: 10.3389/fmats.2024.1451240.
[18] K. Sriboonma and S. Pornpeerakeat, “Experimental investigation of steel confinement of clustered large-size stud shear connector in full-depth precast bridge deck panel,” Key Engineering Materials, vol. 856, pp. 99–105, Aug. 2020.
[19] K. Sriboonma, “Fatigue behavior of steel ring confinement for a clustered stud shear connector in full-depth precast concrete bridge deck panel,” Materials Today: Proceedings, vol. 52, pp. 2555–2561, Jan. 2022.
[20] S. T. Smith and J. G. Teng, “FRP-strengthened RC beams. I: Review of debonding strength models,” Engineering Structures, vol. 24, no. 4, pp. 385–395, 2002.
[21] American Association of State Highway and Transportation Officials (AASHTO), LRFD Bridge Design Specifications, 6th ed., Washington, DC: U.S. Dept. of Transportation, 2015.
[22] EN 1994-1-2: Eurocode 4: Design of Composite Steel and Concrete Structures, 2005.
[23] K. Sriboonma, “Effects of fillet weld to large-size stud shear connector in full-depth precast bridge deck panel,” Materials Today: Proceedings, vol. 52, pt. 5, pp. 2548–2554, 2022.
[24] TIS 2594-2567: Hydraulic Cement, Thai Industrial Standard, Thailand, 2024.
[25] F. Qin, Z. Huang, Z. Zheng, Y. Chou, Y. Zou, and J. Di, “Analytical model for the load-slip relationship of bearing-shear connectors,” Frontiers in Materials, vol. 10, Feb. 2023, Art. no. 1110232, doi: 10.3389/fmats.2023.1110232.
[26] K. Peng, L. Liu, F. Wu, R. Wang, S. Lei, and X. Zhang, “Experimental and numerical analyses of stud shear connectors in steel-SFRCC composite beams,” Materials, vol. 15, no. 13, p. 4665, Jul. 2022, doi: 10.3390/ma15134665.
[27] J. Ding, J. Zhu, J. Kang, and X. Wang, “Experimental study on grouped stud shear connectors in precast steel-UHPC composite bridge,” Engineering Structures, vol. 242, 2021, Art. no. 112479, doi: 10.1016/j.engstruct.2021. 112479.
[28] Y. Zhu, W. Z. Taffese, and G. Chen, “Data-driven shear capacity prediction of studs embedded in UHPC for steel–UHPC composite structures,” Journal of Structural Engineering, vol. 151, no. 9, 2025, Art. no. 04025119, doi: 10.1061/JSENDH.STENG-13818.
[29] E. (Nadelman) Wagner and J. S. Lawler, “Evaluation of fiber distribution and alignment in structural UHPC elements,” International Interactive Symposium on Ultra-High Performance Concrete Papers, vol. 2, no. 1, Jun. 2019.DOI: 10.14416/j.asep.2025.12.003
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







