Page Header

การประยุกต์โหมดความล้มเหลวและการวิเคราะห์ผลกระทบของอุตสาหกรรมพลาสติกด้วยวิธีการตัดสินใจหลายเกณฑ์แบบฟัซซีกรณีศึกษา: ผู้ผลิตเม็ดพลาสติกในประเทศไทย
Application of Failure Mode and Effect Analysis of Plastics Industry with Fuzzy Multi-Criteria Decision

Jirawat Keeratibhubordee, Detcharat Sumrit

Abstract


การศึกษานี้เสนอกรอบการตัดสินใจหลายเกณฑ์แบบฟัซซี (Fuzzy MCDM) โดยอ้างอิงจากวิธีโหมดความล้มเหลวและการวิเคราะห์ผลกระทบ (FMEA) สำหรับการจัดลำดับความสำคัญของกลยุทธ์การบรรเทาความเสี่ยงด้านโลจิสติกส์ย้อนกลับในอุตสาหกรรมพลาสติก ขั้นตอนกรอบงานที่เสนอสามารถแบ่งออกเป็นหกขั้นตอนดังนี้ (i) FMEA ของความเสี่ยงด้านโลจิสติกส์ย้อนกลับและกลยุทธ์การลดความเสี่ยงได้รับการระบุผ่านการทบทวนวรรณกรรมที่ครอบคลุมและตรวจสอบโดยกลุ่มผู้เชี่ยวชาญ (ii) กำหนดมาตราส่วนที่สามารถวัดได้สำหรับเกณฑ์ต่าง ๆ รวมไปถึงความรุนแรง (S) โอกาสในการเกิด (O) ความสามารถในการตรวจจับ (D), ต้นทุน (C) ระดับความยากในการแก้ไขปัญหา (F) และเวลา (T), (iii) คำนวณน้ำหนักเชิงอัตวิสัยของเกณฑ์โดยการปรับใช้กระบวนการลำดับชั้นเชิงวิเคราะห์แบบฟัซซี  (Fuzzy AHP) (iv) คำนวณน้ำหนักเชิงภววิสัยของเกณฑ์โดยใช้วิธี Entropy (v) ให้น้ำหนักของเกณฑ์รวมกัน และ (vi) จัดลำดับความสำคัญของโหมดความล้มเหลวโดยใช้  Fuzzy CODAS ผู้ผลิตเม็ดพลาสติกในประเทศไทยถูกใช้เป็นกรณีศึกษา ผลการศึกษาพบว่าลำดับความสำคัญ ความเสี่ยงด้านสินค้าคงคลัง (FM7) มีความสำคัญมากที่สุด ผลการศึกษานี้อาจจะเป็นประโยชน์ต่อนักวิชาการและผู้ปฏิบัติงานที่เกี่ยวข้องกับอุตสาหกรรมพลาสติก เพื่อการลดความเสี่ยงโลจิสติกส์ย้อนกลับ 

This study proposes a fuzzy multi-criteria decision-making framework (Fuzzy MCDM) based on failure mode effect analysis (FMEA) for prioritizing mitigation strategies for reverse logistics risks in the recycled plastic industry. The proposed framework steps can be divided into six phases as follows; (i) FMEA of reverse logistics risks and risk mitigation strategies are identified through extensive literature review and validated by a group of experts, (ii) defined the measurable scales for criteria including severity (S), occurrence (O), detectability (D), cost (C), degree of difficult to solve problems (F), and time (T), (iii) calculate the subjective weights of criteria by deploying Fuzzy AHP, (iv) compute the objective weights of criteria by utilizing Entropy method, (v) obtain the combined weighs of criteria, (vi) prioritize the failure modes by applying Fuzzy CODAS. The results showed that the priority Inventory risk (FM7) is the most important. Plastic resin manufacturers in Thailand are used as a case study. The results of this study may benefit scholars and practitioners involved in the plastic industry to mitigate reverse logistics risks.      

Keywords: โลจิสติกส์ย้อนกลับ; โลจิสติกส์ย้อนกลับในอุตสาหกรรมพลาสติก; การบรรเทาความเสี่ยง; Reverse logistics; Reverse logistics in the plastic industry; Risk mitigation


[1] W. Tesfaye and D. Kitaw, Conceptualizing revers logistics to plastics recycling system, Social Responsibility Journal, 2020, 17(5), 686-702.

[2] E. Macarthur, Delivering the circular economy: A toolkit for policymakers, Ellen MacArthur Foundation Publishing, Isle of Wight, UK, 2015.

[3] H. Panjehfouladgaran and S.F.W. Lim, Reverse logistics risk management: identification, clustering and risk mitigation strategies, Management Decision, 2020, 58(7), 1449-1474.

[4] K.T. Atanassov, Circular intuitionistic fuzzy sets, Journal of Intelligent and Fuzzy Systems, 2020, 39(5), 5981–5986.

[5] Y. Wu, Z. Deng, Y. Tao, L. Wang, F. Liu, and J. Zhou, Site selection decision frame-work for photovoltaic hydrogen production project using BWM-CRITICMABAC: A case study in Zhangjiakou, Journal of Cleaner Production, 2021, 324, 129233.

[6] H.W. Lo, J.J. Liou, C.N. Huang and Y.C. Chuang, A novel failure mode and effect analysis model for machine tool risk analysis, Reliability Engineering and System Safety, 2019, 183, 173–183.

[7] C. Jin, Y. Ran and G. Zhang, Interval-valued q-rung orthopair fuzzy FMEA application to improve risk evaluation process of tool changing manipulator, Applied Soft Computing, 2021, 104, 107192.

[8] L. Ouyang, W. Zheng, Y. Zhu and X. Zhou, An interval probability‐based FMEA model for risk assessment: a real‐world case, Quality and Reliability Engineering International, 2020, 36(1), 125–143.

[9] R. Jaidee, D. Sumrit and A. Vanichchinchai, Identifying sustainable roll-on/roll-off seaport assessment criteria using the fuzzy delphi method: A case study of thailand, 10th International Conference on Traffic and Logistic Engineering (ICTLE), Proceeding, 2022, 101-106.

[10] S. Senthil, K. Murugananthan and A. Ramesh, Analysis and prioritisation of risks in a reverse logistics network using hybrid multi-criteria decision-making methods, Journal of Cleaner Production, 2018, 179, 716-730.

[11] M. Abdel-Basset, M. Gunasekaran, M. Mohamed and N. Chilamkurti, A framework for risk assessment, management and evaluation: Economic tool for quantifying risks in supply chain, Future Generation Computer Systems, 2019, 90(1), 489-502.

[12] H. Rogers, M. Srivastava, K.S. Pawar and J. Shah, Supply chain risk management in India–practical insights, International Journal of Logistics Research and Applications, 2016, 19(4), 278-299.

[13] T. Noguchi, W.J. Park and R. Kitagaki, Risk evaluation for recycled aggregate according to deleterious impurity content considering deconstruction scenarios and production methods, Resources, Conservation and Recycling, 2015, 104, 405-416.

[14] F. Badurdeen, M. Shuaib, K. Wijekoon, A. Brown, W. Faulkner, J. Amundson, I.S. Jawahir, T.J. Goldsby, D. Iyengar and B. Boden, Quantitative modeling and analysis of supply chain risks using Bayesian theory, Journal of Manufacturing Technology Management, 2014, 25(5), 631-654.

[15] H.O. Addo, E.J. Dun-Dery, E. Afoakwa, A. Elizabeth, A. Ellen and M. Rebecca, Correlates of domestic waste management and related health outcomes in Sunyani, Ghana: A protocol towards enhancing policy, BMC Public Health, 2017, 17, 1-10.

[16] P.V. Patil and R. Kamble, Occupational health hazards in municipal solid waste collecting workers of Chandrapur city, Central India, International Journal of Environment, 2017, 6(1), 46-57.

[17] D. Sumrit and S. Srisawad, Fuzzy failure mode and effect analysis model for operational supply chain risks assessment: An application in canned tuna manufacturer in Thailand, LogForum, 2022, 18(1), 77-96

[18] M. Subramani and V.B. Kumaravelu, A fuzzy based vertical handover network selection scheme, Indonesian Journal of Electrical Engineering and Computer Science, 2020, 17(1), 324-330.

[19] B. Karatop, B. Taskin, E. Adar and C. Kubat, Decision analysis related to the renewable energy investments in Turkey based on a Fuzzy AHP- EDAS-Fuzzy FMEA approach, Computers and Industrial Engineering, 2021, 151, 106958.

[20] S.K. Saraswat and A.K. Digalwar, Evaluation of energy alternatives for sustainable development of energy sector in India: An integrated Shannon’s entropy fuzzy multi-criteria decision approach, Renewable Energy, 2021, 171, 58-74.

[21] J.L. Aro, E. Selerio Jr, S.S. Evangelista, F. Maturan, N.M. Atibing and L. Ocampo, Fermatean fuzzy CRITIC-CODAS-SORT for characterizing the challenges of circular public sector supply chains, Operations Research Perspectives, 2022, 9, 100246.

Full Text: PDF

DOI: 10.14416/j.ind.tech.2023.08.002

Refbacks

  • There are currently no refbacks.