Page Header

Production of Food Flavouring Agents by Enzymatic Reaction and Microbial Fermentation

Elizabeth Jayex Panakkal, Nichaphat Kitiborwornkul, Malinee Sriariyanun, Jakaphan Ratanapoompinyo, Patchanee Yasurin, Suvaluk Asavasanti, Wawat Rodiahwati, Prapakorn Tantayotai


Rising trends in the consumptions of food flavour compounds lead to motivation in the production of food flavours. The conventional techniques of flavour production are insufficient to produce flavour compounds according to the ascending demands of the market in terms of quantities and varieties. The current flavour production methods utilize chemical synthesis, which can produce a greater numbers of flavours with less time. However, the demand for natural products in consumables have created a necessity for new methodologies to produce flavour compounds with the label of “natural” origin. Emerging techniques in biotechnologies have enabled industries to produce compounds that can be considered natural. This review provides insights into the classification of flavour compounds and their production using microorganisms and enzymes in an ecofriendlier manner. The compounds produced by these techniques can be labelled as “natural” and can increase the market size of food flavours.


[1] Allied Market Research, “Food flavors market,” 2020. [Online]. Available: https://www.allied market#:~: text=The%20food%20flavors%20market%20 size,4.6%25%20from%202020%20to%202027

[2] C. Gupta, D. Prakash, and S. Gupta, “A biotechnological approach to microbial-based perfumes and flavours,” Journal of Microbiology and Experimentation, vol. 2, no.1, p. 00034, 2015.

[3] J. Schrader, “Microbial flavour production,” Flavours and Fragrances, pp. 507–574, 2007, doi: 10.1007/978-3-540-49339-6_23.

[4] J. K. Parker, “Introduction to aroma compounds in foods,” Flavour Development, Analysis and Perception in Food and Beverages, pp. 3–30, 2015, doi: 10.1016/B978-1-78242-103-0.00001-1.

[5] S. G. Dastager, “Aroma compounds,” Biotechnology for Agro-Industrial Residues Utilisation, pp. 105– 127, 2009, doi:10.1007/978-1-4020-9942-7_6.

[6] P. Ngamchuachit, Y. Kitai, and S. Keeratipibul, “Comparison of dynamic headspace trapping on Tenax TA and headspace stir bar sorptive extraction for analysis of grilled chicken (Yakitori) volatiles,” Applied Science and Engineering Process, vol.13, no. 3, 2020, doi: 10.14416/j.asep.2020.03.003.

[7] T. Kosuge and H. Kamiya, “Discovery of a pyrazine in a natural product: Tetramethylpyrazine from cultures of a strain of Bacillus subtilis,” Nature, vol. 193, pp.776–776, 1962, doi: 10.1038/ 193776a0.

[8] H. H. M. Fadel, S. N. Lotfy, M. M. S. Asker, M. G. Mahmoud, and S. Y. Al-Okbi, “Nutty-like flavour production by Corynebacterium glutamicum 1220T from enzymatic soybean hydrolysate. Effect of encapsulation and storage on the nutty flavouring quality,” Journal of Advanced Research, vol. 10, pp. 31–38, 2018, doi: 10.1016/j.jare.2018. 01.003.

[9] A. J. Kruis, A. C. Bohnenkamp, C. Patinios, Y. M. van Nuland, M. Levisson, A. E. Mars, C. van den Berg, S. W. M. Kengen, and R. A. Weusthuis, “Microbial production of short and medium chain esters: Enzymes, pathways, and applications,” Biotechnology Advances, vol. 37, no. 7, p. 107407, 2019, doi: 10.1016/j.biotechadv.2019.06.006.

[10] A. Braga, C. Guerreiro, and I. Belo, “Generation of flavours and fragrances through biotransformation and de novo synthesis,” Food and Bioprocess Technology, vol. 11, pp. 2217–2228, 2018.

[11] J. Koorkitpoonpol, N. Suwannaprom, S. Keeratipibul, K. Wongravee, P. Phuwapraisirisan, L. Xiao, S. Boonbumrung, and P. Ngamchuachit, “Flavour profile in fresh-squeezed juice of four Thai lime cultivars: Identification of compounds that influence fruit selection by master chefs,” Applied Science and Engineering Process, vol. 13, no. 2, pp. 146–157,2020, doi: 10.14416/j.asep. 2020.02.001.

[12] L. Caputi and E. Aprea, “Use of terpenoids as natural flavouring compounds in food industry,” Recent Patents on Food, Nutrition & Agriculture, vol. 3, no. 1, p. 916, 2011, doi:10.2174/2212798 411103010009.

[13] A. Sharma, P. Sharma, J. Singh, S. Singh, and L. Nain, “Prospecting the potential of agroresidues as substrate for microbial flavor production,” Frontiers in Sustainable Food Systems, vol. 4, no. 18, 2020. doi: 10.3389/fsufs.2020.00018.

[14] B. A. Smit, W. J. Engels, and G. Smit, “Branched chain aldehydes: Production and breakdown pathways and relevance for flavours in foods,” Applied Microbiology and Biotechnology, vol. 81, pp. 987–999, 2009, doi: 10.1007/s00253-008- 1758-x.

[15] I.-I. Hanán, L. Noguera-Artiaga, E. Sendra, A. J. Pérez-López, F. Burló, A. Ángel, C. Barrachina, and D. López-Lluch, “Volatile composition, sensory profile, and consumers’ acceptance of fondillón,” Journal of Food Quality, vol. 2019, Art. no. 5981762, 2019, doi: 10.1155/2019/5981762.

[16] G. Smit, B. A. Smit, and W. J. M. Engels, “Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products,” FEMS Microbiology Reviews, vol. 29, no. 3, pp. 591–610, 2005.

[17] W. Schwab, R. Davidovich-Rikanati, and E. Lewinsohn, “Biosynthesis of plant-derived flavour compounds,” The Plant Journal, vol. 54, no. 4, pp. 712–732, 2008, doi: 10.1111/j.1365- 313x.2008.03446.x.
[18] V. M. Marshall, “Lactic acid bacteria: Starters for flavour,” FEMS Microbiology Reviews, vol. 3, no. 3, pp. 327–336, 1987, doi: 10.1111/j.1574- 6968.1987.tb02469.x.

[19] B. J. Meussen, L. H. de Graaff, J. P. M. Sanders, and R. A. Weusthuis, “Metabolic engineering of Rhizopus oryzae for the production of platform chemicals,” Applied Microbiology and Biotechnology, vol. 94, pp. 875–886, 2012.

[20] G. Cravotto and A. Binello, “Innovative techniques and equipment for flavours extraction application and effectiveness of ultrasound and microwaves,” in Fragrances Supplement to Household and Personal Care Today, 2010, pp. 30–32.

[21] M. A. Longo and M. A. Sanroman, “Production of food aroma compounds: Microbial and enzymatic methodologies,” Food Technology and Biotechnology, vol. 44, no. 3, pp. 335–353, 2006.

[22] L. Janssens, H. L. de Pooter, N. M. Schamp, and E. J. Vandamme, “Production of flavours by microorganisms,” Process Biochemistry, vol. 27, pp. 195–215, 1992.

[23] R. G. Berger, “Aroma compounds from microbial de novo synthesis,” Aroma Biotechnology, pp. 51– 77, 1995, doi: 10.1007/978-3-642-79373-8_5.

[24] J. L. Bicas, J. C. Silva, A. P. Dionisio, and G. M. Pastore, “Biotechnological production of bioflavors and functional sugars,” Food Science and Technology, vol. 30, no. 1, pp. 7–18, 2010.

[25] S-L. Lee, S-J. Lin, and C-C. Chou, “Growth of and production of γ- Decalactone by Sporobolomyces odorus in jar fermenters as affected by pH, aeration and fed-batch technique,” Journal of Fermentation and Bioengineering, vol. 80, no. 2, pp. 195–199, 1995.

[26] M. L. Escamilla, S. E. Valdes, J. Soriano, and A. Tomasini, “Effect of some nutritional and environmental parameters on the production f diacetyl and on starch consumption by Pediococcus pentosaceus and Lactobacillus acidophilus in submerged culture,” Journal of Applied Microbiology, vol. 88, pp. 142–153, 2000.

[27] Y. Gu, J. Ma, Y. Zhu, and P. Xu, “Refactoring ehrlich pathway for high-yield 2-phenylethanol production in Yarrowia lipolytica,” ACS Synthetic Biology, vol. 9, no. 3, pp. 623–633, 2020, doi: 10.1021/acssynbio.9b00468.

[28] J. P. Morrissey, M. M. W. Etschmann, J. Schrader, and G. M. de Billerbeck, “Cell factory applications of the yeast Kluyveromyces marxianus for the biotechnological production of natural flavour and fragrance molecules,” Yeast, vol. 32, pp. 3– 16, 2014, doi: 10.1002/yea.3054.

[29] U. Krings and R. G. Berger, “Biotechnological production of flavours and fragrances,” Applied Microbiology and Biotechnology, vol. 49, no. 1, pp. 1–8, 1998, doi: 10.1007/s002530051129.

[30] I. Nadal, J. Rico, G. Pérez-Martínez, M. J. Yebra, and V. Monedero, “Diacetyl and acetoin production from whey permeate using engineered Lactobacillus casei,” Journal of Industrial Microbiology and Biotechnology, vol. 36, no. 9, pp. 1233–1237, 2009, doi: 10.1007/s10295-009- 0617-9.

[31] G. Allegrone, M. Barbeni, R. Cardillo, C. Fuganti, P. Grasselli, A. Miele, and A. Pisciotta, “On the steric course of the microbial generation of (Z6)-gamma-dodecenolactone from (10R, S) 10-hydroxy-octadeca-(E8, Z12)-dienoic acid,” Biotechnology Letters, vol. 13, pp. 765–768, 1991, doi: 10.1007/BF01026755.

[32] Z. Kang, C. Zhang, G. Du, and J. Chen, “Metabolic engineering of Escherichia coli for production of 2-phenyl ethanol from renewable glucose,” Applied Biochemistry and Biotechnology, vol. 172, no. 4, pp. 2012–2021, 2014, doi: 10.1007/s12010- 013-0659-3.

[33] O. A. Carter, R. J. Peters, and R. Croteau, “Monoterpene biosynthesis pathway construction in Escherichia coli,” Phytochemistry, vol. 64, no. 2, pp. 425–433, 2003.

[34] A. M. Kunjapur, Y. Tarasova, and K. L. J. Prather, “Synthesis and accumulation of aromatic aldehydes in an engineered strain of Escherichia coli,” Journal of the Americal Chemical Society, vol. 136, no. 33, pp. 11644–11654, 2014.

[35] E. Lanza, K. H. Ko, and J. K. Palmer, “Aroma production by cultures of Ceratocystis moniliformis,” Journal of Agricultural and Food Chemistry, vol. 24, no. 6, pp. 1247–1250, 1976.

[36] V. Rojas, J. V. Gil, F. Pinaga, and P. Manzanares, “Studies on acetate ester production by nonsaccharomyces wine yeasts,” International Journal of Food Microbiology, vol.70, no. 3, pp. 283–289, 2001.

[37] E. H. Hansen, B. L. Møller, G. R. Kock, C. M. Bünner, C. Kristensen, O. R. Jensen, F. T. Okkels, C. E. Olsen, M. S. Motawia, and J. Hansen, “De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae),” Applied and Environmental Microbiology, vol. 75, no. 9, pp. 2765–2774, 2009, doi: 10.1128/AEM.02681-08.

[38] A. Vilela, E. Bacelar, T. Pinto, R. Anjos, E. Correia, B. Goncalves, and F. Cosme, “Beverage and food fragrance biotechnology, novel applications, sensory and sensor techniques: An overview,” Foods, vol. 8. no.12, p. 643, 2019.

[39] C. E. Fabre, P. J. Blanc, and G. Goma, “Production of benzaldehyde by several strains of Ischnoderma benzoinum,” Sciences des Aliments, vol. 16, no. 1, pp. 61–68, 1996.

[40] A. Singh, K. Mukhopadhyay, and S. G. Sachan, “Biotransformation of eugenol to vanillin by a novel strain Bacillus safensis SMS1003,” Biocatalysis and Biotransformation, vol. 37, no. 4, pp. 291–303, 2019, doi: 10.1080/10242422. 2018.1544245.

[41] S. G. A. Prieto, J. A. V. Perea, and C. C. L. Ortiz, “Microbial biotransformation of (R)-(+)- limonene by Penicillium digitatum DSM 62840 for producing (R)-(+)-terpineol,” Vitae, vol. 8, no. 2, pp. 136–172, 2011.

[42] G. Molina, M. G. Pessôa, J. L. Bicas, P. Fontanille, C. Larroche, and G. M. Pastore, “Optimization of limonene biotransformation for the production of bulk amounts of α-terpineol,” Bioresource Technology, vol. 294, p. 122180, 2019, doi: 10.1016/ j.biortech.2019.122180.

[43] B. R. Velasco, G. J. H. Gil, P. C. M. Garcia, and R. D. L. Durango, “Production of 2-phenyl ethanol in the biotransformation of cinnamyl alcohol by the plant pathogenic fungus Colletotrichum acutatum,” Vitae, vol. 17, no. 3, pp. 272–280, 2010.

[44] F. Boratynski, E. Szczepanska, D. D. Simeis, S. Serra, and E. Brenna, “Bacterial biotransformation of oleic acid: New findings on the formation of γ-dodecalactone and 10-ketostearic acid in the culture of Micrococcus Luteus,” Molecules, vol. 25, no. 13, p. 3024, 2020.

[45] A. Tilay, M. Bule, and U. Annapure, “Production of bio vanillin by one-step biotransformation using fungus Pyconoporous cinnabarinus,” Journal of Agricultural and Food Chemistry, vol. 58, no. 7, pp. 4401–4405, 2010.
[46] J. M. R. Marostica and G. M. Pastore, “Production of R-(+)-α-terpineol by the biotransformation of limonene from orange essential oil, using cassava wastewater as medium,” Food Chemistry, vol. 101, no. 1, pp. 345–350, 2007, doi: 10.1016/j.foodchem. 2005.12.056.

[47] D. Hua, C. Ma, S. Lin, L. Song, Z. Deng, Z. Maomy, Z. Zhang, B. Yu, and P. Xu, “Biotransformation of isoeugenol to vanillin by a newly isolated Bacillus pumilus strain: Identification of major metabolites,” Journal of Biotechnology, vol. 130, no. 4, pp. 463–470, 2007.

[48] R. Aravindan, P. Anbumathi, and T. Virutagiri, “Lipase applications in food industry,” Indian Journal of Biotechnology, vol. 6, pp. 141–158, 2007.

[49] A. Pandey, S. Benjamin, C. R. Soccol, P. Nigam, N. Krieger, and V. T. Soccol, “The realm of microbial lipases in biotechnology,” Biotechnology and Applied Biochemistry, vol. 29, no. 2, pp.119– 131, 1999.

[50] M. K. Châabouni, H. Ghamgui, S. Bezzine, A. Rekik, Y. Gargouri, “Production of flavour esters by immobilized Staphylococcus simulans lipase in a solvent-free system,” Process Biochemistry, vol. 41, no. 7, pp. 1692–1698, 2006.

[51] V. K. Garlapati and R. Banerjee, “Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification,” Enzyme Research, vol. 2013, pp. 1–6, 2013.

[52] K. Poornima and R. Preetha, “Biosynthesis of food flavours and fragrances- A review,” Asian Journal of Chemistry, vol. 29, no. 11, pp. 2345– 2352, 2017.

[53] K. Ohmiya, S. Tanimura, T. K. Yashi, and S. Shimizu, “Application of immobilized alkaline protease to cheese making,” Journal of Food Science, vol. 44, no. 6, pp. 1584–1588, 1979, doi: 10.1111/j.1365-2621.1979.tb09095.x.

[54] B. A. E-Y. A. El-Salam, M. S. Shmed, M. M. Yasser, and S. S. E-D. Taha, “Soft white cheese ripening using bacterial protease enzyme,” Acta Scientiarum Polonorum Technologia Alimentaria, vol. 18, no. 4, pp. 385–397, 2019, doi: 10.17306/J. AFS.2019.0665.

[55] P. González-Pombo, L. Fariña, F. Carrau, F. Batista-Viera, and B. M. Brena, “Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases,” Food Chemistry, vol. 143, pp. 185–91, 2014, doi: 10.1016/j. foodchem.2013.07.107.

[56] B. R. Salah, H. Ghamghui, N. Miled, H. Mejdoub, and Y. Gargouri, “Production of butyl acetate ester by lipase from novel strain of Rhizopus oryzae,” Journal of Bioscience and Bioengineering, vol. 103, no. 4, pp. 368–72, 2007, doi: 10.1263/jbb.103. 368.

[57] W. C. Moreira, A. L. P. Elias, W. R. Osório, and G. S. Padilha, “Alternative method to improve the ethyl valerate yield using an immobilised Burkholderia cepacia lipase,” Journal of Microencapsulation, vol. 36, no. 4, pp. 327–337, 2019, doi: 10.1080/02652048.2019.1626927.

[58] M. C. Martı́nez-Cuesta, P. F. de Palencia, T. Requena, and C. Peláez, “Enzymatic ability of Lactobacillus casei subsp. casei IFPL731 for flavour development in cheese,” International Dairy Journal, vol. 11, no. 8, pp. 577–585, 2001, doi: 10.1016/S09586946(01)00046-2.

[59] A. Güvenç, N. Kapucu, and U. Mehmetoğlu, “The production of isoamyl acetate using immobilized lipases in a solvent-free system,” Process Biochemistry, vol. 38, no. 3, pp. 379–386, 2002, doi: 10.1016/S0032-9592(02)00099-7.

[60] M. A. Fraatz, S. J. L. Riemer, R. Stöber, R. Kaspera, M. Nimtz, R. G. Berger, and H. Zorn, “A novel oxygenase from Pleurotus sapidus transforms valencene to nootkatone,” Journal of Molecular Catalysis B: Enzymatic, vol. 61, no. 3– 4, pp. 202–207, 2009, doi:10.1016/j.molcatb. 2009.07.001.

[61] V. M. Marshall and W. M. Cole, “Threonine aldolase and alcohol dehydrogenase activities in Lactobacillus bulgaricus and Lactobacillus acidophilus and their contribution to flavour production in fermented milks,” Journal of Dairy Research, vol. 50, no. 03, pp. 375–379, 1983, doi:10.1017/s0022029900023219.

[62] M. García-Bofill, P. W. Sutton, M. Guillén, and G. Álvaro, “Enzymatic synthesis of vanillin catalyzed by an eugenol oxidase,” Applied Catalysis A: General, vol. 582, p. 117117, 2019, doi:10.1016/j. apcata.2019.117117.

[63] J. S. Ghosh, “Solid state fermentation and food processing: A short review,” Journal of Nutrition and Food Sciences, vol. 6, no. 1, 2016, doi: 10.4172/ 2155-9600.1000453.

[64] M. Soares, P. Christen, A. Pandey, and C. R. Soccol, “Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation,” Process Biochemistry, vol. 35, no. 8, pp. 857–861, 2000.

[65] S. Damasceno, M. P. Cereda, G. M. Pastore, and J. G. Oliveira, “Production of volatile compounds by Geotrichum fragrans using cassava wastewater as substrate,” Process Biochemistry, vol. 39, no. 4, pp. 411–414, 2003.

[66] A. B. Medeiros, A. Pandey, P. Christen, P. S. Fontoura, R. J. de Freitas, and C. R Soccol, “Aroma compounds produced by Kluyveromyces marxianus in solid state fermentation on a packed bed column bioreactor,” World Journal of Microbiology and Biotechnology, vol. 17, no. 8, pp. 767–771, 2001.

[67] A. W. Norliza and C. O. Ibrahim, “The production of benzaldehyde by Rhizopus oligosporus USM R1 in a solid state fermentation (SSF) system of soybean meal: Rice husks,” Malaysian Journal of Microbiology, vol. 1, no. 2, pp. 17–24, 2005.

[68] M. L. Escamilla-Hurtado, S. E.Valdes-Martinez, J. Soriano-Santos, R. Gomez-Pliego, J. R. Verde- Calvo, A. Reyes-Dorantes, and A. Tomasini- Campocosio, “Effect of culture conditions on production of butter flavour compounds by Pediococcus pentosaceus and Lactobacillus acidophilus in semisolid maize-based cultures,” International Journal of Food Microbiology, vol. 105, no. 3, pp. 305–316, 2005.

[69] T. Mantzouridou, A. Paraskevopoulou, and S. Lalou, “Yeast flavour production by solid state fermentation of orange peel waste,” Biochemical Engineering Journal, vol. 101, pp. 1–8, 2015.

[70] T. D. Shrestha, V. Kunathigan, K. Kitsawad, and S. Panprivech, “Impact of fermentation conditions on the extraction of phenolics and sensory characteristics of Mangosteen wine,” Applied Science and Engineering Process, 2020, doi:10.14416/j.asep.2020.05.001.

[71] H. H. M. Fadel, M. G. Mahmoud, M. M. S. Asker, and S. N. Lotfy, “Characterization and evaluation of coconut aroma produced by Trichoderma viride EMCC-107 in solid state fermentation on sugarcane bagasse,” Electronic Journal of Biotechnology, vol. 18, no. 1, pp. 5–9, 2015.

[72] Global Market Insights, “Industry Trends,” 2015. [Online]. Available: https://www.gminsights. com/industry-analysis/bio-vanillin-market

[73] L-Q. Zhao, Z-H. Sun, P. Zheng, and L-L. Zhu, “Biotransformation of Isoeugenol to Vanillin by a novel strain of Bacillus fusiformis,” Biotechnology Letters, vol. 27, pp. 1505–1509, 2005, doi: 10.1007/s10529-005-1466-x.

[74] L. Yan, P . Chen, S. Zhang, S. Li, X. Yan, N. Wang, N. Liang, and H. Li, “ Biotransformation of ferulic acid to vanillin in the packed bed-stirred fermenters,” Scientific Reports, vol. 6, no. 1, p. 34644, 2016, doi: 10.1038/srep34644.

[75] P. Chattopadhyay, G. Banerjee, and S. K. Sen, “Cleaner production of vanillin through biotransformation of ferulic acid esters from the agro residue by Streptomyces sannanensis,” Journal of Cleaner Production, vol. 182, pp. 272– 279, 2018. [76] D. D. Gioia, L. Sciubba, M. Ruzzi, L. Setti, and F. Fava, “Production of vanillin from wheat bran hydrolyzates via microbial bioconversion,” Journal of Chemical Technology & Biotechnology, vol. 84, no. 10, pp. 1441–1448, 2009.

[77] L. Zheng, P. Zheng, Z. Sun, Y.Bai, J.Wang, and X. Guo, “Production of vanillin from the waste residue of rice bran oil by Aspergillus niger and Pycnoporus cinnabarinus,” Bioresource Technology, vol. 98, no. 5, pp. 1115–1119, 2007.

[78] B. Falconnier, C. Lapierre, L. Lesage-Meessen, G. Yonnet, P. Brunerie, B. Colonna-Ceccaldi, G. Corrieu, and M Asther, “Vanillin as a product of ferulic acid biotransformation by the whiterot fungus Pycnoporus cinnabarinus I-937: Identification of metabolic pathways,” Journal of Biotechnology, vol. 37, no. 2, pp. 123–132, 1994.

[79] P. Xu, D. Hua, and C. Ma, “Microbial transformation of propenylbenzenes for natural flavour production,” Trends in Biotechnology, vol. 25, no.12, pp. 571– 576. 2007, doi:10.1016/j.tibtech.2007.08.011.

Full Text: PDF

DOI: 10.14416/j.asep.2021.04.006


  • There are currently no refbacks.