Page Header

Thermal Stability and Tribological Behaviors of Tri-fillers Reinforced Epoxy Hybrid Composites

Tottyeapalayam Palanisamy Sathishkumar, Palanisamy Navaneethakrishnan, Ponnuswamy Maheskumar


The present works investigates the thermal stability and wear behaviour of tri-fillers reinforced hybrid composites. The Silica (S), Coconut shell (C) and Graphite (G) fillers reinforced homogeneous and functional graded epoxy composites are prepared by vertical injection molding techniques. The effect of filler contents, design parameters and its interaction on wear and friction behavior of SCG composites has been investigated. With help of Taguchi’s techniques, L27 orthogonal array, a series of experiments are planned and conducted on pin-on-disc tribo machine with three different loading of 10, 20 and 30 N, three sliding velocities of 1, 1.5 and 2 m/s by varying the G filler content of 10, 20 and 30 wt% with constant weight fraction of S and C fillers of 10 wt%. The results shows that the increasing the Gr content was increased the wear resistance and rate. The optimization techniques used to determine the composites parameters.


[1] S. M. Rangappa, S. Siengchin, and H. N. Dhakal, “Green-composites: Ecofriendly and sustainability,” Applied Science and Engineering Progress, vol. 13, no. 3, pp. 183–184, 2020, doi: 10.14416/j. asep.2020.06.001.

[2] M. Jawaid and S. Siengchin, “Hybrid composites: A versatile material for future,” Applied Science and Engineering Progress, vol. 12, no.4, p. 223, 2019, doi:10.14416/j.asep.2019.09.002.

[3] S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol. 12, no. 3, p. 149, 2019, doi:10.14416/j.asep.2019.03.002.

[4] M. Zamanian, M. Mortezaei, B. Salehnia, and J. E. Jam, “Fracture toughness of epoxy polymer modified with nanosilica particles: Particle size effect,” Engineering Fracture Mechanics, vol. 97, pp. 193–206, 2013, doi:10.1016/j.engfracmech. 2012.10.027.

[5] H.-Y. Liu, G.-T. Wang, Y.-W. Mai, and Y. Zeng, “On fracture toughness of nano-particle modified epoxy,” Composites Part B: Engineering, vol. 42, no. 8, pp. 2170–2175, 2011, doi: 10.1016/j. compositesb. 2011.05.014.

[6] R. V. Kurahattia, A. O. Surendranathan, A. V. R. Kumar, C. S. Wadageri, V. Auradi, and S. A. Kori, “Dry sliding wear behaviour of epoxy reinforced with nanoZrO2 particles,” Procedia Materials Science, vol. 5, pp. 274–280, 2014, doi: 10.1016/j.mspro.2014.07.267.

[7] Z. Zhang, C. Breidt, L. Chang, F. Haupert, and K. Friedrich, “Enhancement of the wear resistance of epoxy: Short carbon fibre, graphite, PTFE and nano- TiO2,” Composites: Part A, vol. 35, pp. 1385–1392, 2004, doi:10.1016/j.compositesa.2004.05.005.

[8] F. Li, K.-A. Hu, J.-L Li, and B.-Y. Zhao, “The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene,” Wear, vol. 249, pp. 877–882, 2002, doi: 10.1016/S0043- 1648(01)00816-X.
[9] J. Xu, H. Yan, and D. Gu, “Friction and wear behavior of polytetrafluoroethene composites filled with Ti3SiC2,” Materials and Design, vol. 61, pp. 270–274, 2014, doi: 10.1016/j.matdes. 2014.04.069. [10] B. Wetzel, F. Haupert, and M. Q. Zhang, “Epoxy nanocomposites with high mechanical and tribological performance,” Composites Science and Technology, vol. 63, pp. 2055–2067, 2003, doi: 10.1016/S0266-3538(03)00115-5.

[11] Y. L. Liang and R. A. Pearson, “Toughening mechanisms in epoxy–silica nanocomposites (ESNs),” Polymer, vol. 50, pp. 4895–4905, 2009, doi: 10.1016/j.polymer.2009.08.014.

[12] J. Abenojar, J. Tutor, Y. Ballesteros, J. C. del Real, and M. A. Martínez, “Erosion-wear, mechanical and thermal properties of silica filled epoxy nanocomposites,” Composites: Part B, vol. 120, pp. 42–53, 2017, doi: 10.1016/j.compositesb. 2017.03.047.
[13] M. Zappalorto, A. Pontefisso, A. Fabrizi, and M. Quaresimin, “Mechanical behaviour of epoxy/ silica nanocomposites: Experiments and modeling,” Composites: Part A, vol. 72, pp. 58–64, 2015, doi: 10.1016/j.compositesa.2015.01.027.

[14] C. P. Gao, G. F. Guo, F. Y. Zhao, T. M. Wang, B. Jim, B. Wetzel, G. Zhang, and Q. H. Wang, “Tribological behaviors of epoxy composites under water lubrication conditions,” Tribology International, vol. 95, pp. 333–341, 2016, doi: 10.1016/j.triboint.2015.11.041.

[15] C.-G. Lee, Y.-J. Hwang, Y.-M. Choi, J.-K. Lee, C. Choi, and J.-M. Oh, “A study on the tribological characteristics of graphite nano lubricants,” International Journal of Precision Engineering and Manufacturing, vol. 10, pp. 85–90, 2009, doi: 10.1007/S12541-009-0013-4.

[16] B. B. Difallah, M. Kharrat, M. Dammak, and G. Monteil, “Improvement in the tribological performance of polycarbonate via the incorporation of molybdenum disulfide particles,” Tribology Transactions, vol. 57, no. 5, pp. 806–813, 2014, doi: 10.1080/10402004.2014.913751.

[17] H.-J. Zhang, Z.-Z. Zhang, and F. Guo, “Studies of the influence of graphite and MoS2 on the tribological behaviors of hybrid PTFE/Nomex fabric composite,” Tribology Transactions, vol. 54, no. 3, pp. 417–423. doi: 10.1080/10402004. 2011.553027.

[18] C. D. Liyanage and M. Pieris, “A physicochemical analysis of coconut shell powder,” Procedia Chemistry, vol. 16, pp. 222–228, 2015, doi: 10.1016/j.proche.2015.12.045.

[19] A. K. Bledzki, A. A. Mamun, and J. Volk, “Barley husk and coconut shell reinforced polypropylene composites: The effect of fibre physical, chemical and surface properties,” Composites Science and Technology, vol. 70, pp. 840–846, 2010, doi:10.1016/j.compscitech.2010.01.022.

[20] N. W. Khun, H. Zhang, D. W. Sun, and J. L. Yang, “Tribological behaviors of binary and ternary epoxy composites functionalized with different microcapsules and reinforced by short carbon fibers,” Wear, vol. 350–351, pp. 89–98, 2016, doi:10.1016/j.wear.2016.01.007.

[21] Siddhartha, A. Patnaik, and A. D. Bhatt, “Mechanical and dry sliding wear characterization of epoxy–TiO2 particulate filled functionally graded composites materials using Taguchi design of experiment,” Materials & Design, vol. 32, no. 2, pp. 615–627, 2011, doi:10.1016/j.matdes. 2010.08.011.

[22] N. W. Khun, D. W. Sun, M. X. Huang, J. L. Yang, and C. Y. Yue, “Wear resistant epoxy composites with diisocyanate-based self-healing functionality,” Wear, vol. 313, pp. 19–28, 2014, doi: 10.1016/j.wear.2014.02.011.

[23] L.-C. Tang, H. Zhang, J.-H. Han, X.-P. Wu, and Z. Zhang, “Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes,” Composites Science and Technology, vol. 72, no. 1, pp. 7–13, 2011, doi:10.1016/j. compscitech.2011.07.016.
[24] J. Zhua, L. Mab, and R. Dwyer-Joyce, “Friction and wear behaviours of self-lubricating peek composites for articulating pin joints,” Tirbology International, vol. 149, p. 105741, 2019.

[25] A. Kurdia, W. H. Kana, and L. Chang, “Tribological behaviour of high performance polymers and polymer composites at elevated temperature,” Tirbology International, vol. 130, pp. 94–105, 2019.
[26] A. Verma, L. Budiyal, and S. M. Rangappa, and S. Siengchin, “Processing and characterization analysis of pyrolyzed oil rubber (from waste tires) ‐epoxy polymer blend composite for lightweight structures and coatings applications,” Polymer Engineering & Science, vol. 59, no. 10, pp. 2041– 2051, 2019.

[27] A. Verma, K. Baurai, S. M. Rangappa, and S. Siengchin, “Mechanical, microstructural, and thermal characterization insights of pyrolyzed carbon black from waste tires reinforced epoxy nanocomposites for coating application,” Polymer Composites, vol. 41, no. 1, pp. 338–349, 2020.

[28] K. N. Bharath, P. Madhu, T. G. Y. Gowda, A. Verma, S. M. Rangappa, and S. Siengchin, “A novel approach for development of printed circuit board from biofiber based composites,” Polymer Composites, vol. 41, no.11, pp. 4550–4558, 2020.

[29] M. K. Marichelvam, P Manimaran, A. Verma, S. M. Rangappa, S. Siengchin, K. Kandakodeeswaran, and M. Geetha, “A novel palm sheath and sugarcane bagasse fiber based hybrid composites for automotive applications: An experimental approach,” Polymer Composites, vol. 42, no. 1, pp. 512–521, 2021.

Full Text: PDF

DOI: 10.14416/j.asep.2021.08.002


  • There are currently no refbacks.