Page Header

Simulation and Experimental Studies on Sustainable Process Optimization of CO2 Adsorption Using Zeolite 5A Pellet

Boonthita Wongchalerm, Thanaporn Arunchai, Thanayut Khamkenbong, Supawon Sangsuradet, Anurak Pitiraksakul, Patcharin Worathanakul

Abstract


This study focused on a quantitative study of the CO2 adsorption dynamic within the adsorbent particle. It could drive and improve ideal pore characteristics and the adsorption process efficiency. The parameters operating conditions for the CO2 adsorption process of zeolite 5A pellet were studied using Aspen Adsorption. The effects of compression force (200–400 MPa), compression time (5–15 min), and addition of bentonite binder (0–15% wt. of bentonite binder) for zeolite 5A pelletization and temperature for CO2 adsorption ranging from 298–373 K were studied. There was an error from the simulation of approximately 0.34–10.62% compared to the experimental results. The results showed that the interparticle voidage was reduced, and the appropriate mass transfer was required for good CO2 adsorption capacity. Reduction of interparticle voidage is achieved using a small compression force, a short compression duration, and a small bentonite binder, all of which significantly increase CO2 adsorption capacity. The mass transfer must be within the optimum range because it will decrease the contact time between the zeolite surface and the CO2 molecules. The CO2 adsorption increases with the gas phase temperature decrease. The result showed that the maximum CO2 adsorption by zeolite 5A was 7.078 mmol CO2/g with 0 wt% bentonite binder, 200 MPa, and 5 min at 298 K, 1 atm pressure.

Keywords



[1] L. Chen, T. Watanabe, H. Kanoh, K. Hata, and T. Ohba, “Cooperative CO2 adsorption promotes high CO2 adsorption density over wide optimal nanopore range,” Adsorption Science & Technology, vol. 36, no. 1–2, pp. 625–639, 2017, doi: 10.1177/0263617417713573.

[2] P. A. P. Mendes, A. M. Ribeiro, K. Gleichmann, A. F. P. Ferreira, and A. E. Rodrigues, “Separation of CO2/N2 on binderless 5A zeolite,” Journal of CO2 Utilization, vol. 20, pp. 224–233, 2017, doi: 10.1016/j.jcou.2017.05.003.

[3] Q. H. Dirar and K. F. Loughlin, “Intrinsic adsorption properties of CO2 on 5A and 13X zeolite,” Adsorption, vol. 19, no. 6, pp. 1149–1163, 2013, doi: 10.1007/s10450-013-9543-2.

[4] M. Mofarahi and F. Gholipour, “Gas adsorption separation of CO2/CH4 system using zeolite 5A,” Microporous and Mesoporous Materials, vol. 200, pp. 1–10, 2014, doi: 10.1016/j.micromeso.2014. 08.022.

[5] A. I. Sarker, A. Aroonwilas, and A. Veawab “Equilibrium and kinetic behaviour of CO2 adsorption onto zeolites, carbon molecular sieve and activated carbons,” Energy Procedia, vol. 114, pp. 2450–2459, 2017, doi: 10.1016/j. egypro.2017.03.1394.

[6] K. Narang, K. Fodor, A. Kaiser, and F. Akhtar “Optimized cesium and potassium ion-exchanged zeolites A and X granules for biogas upgrading,” R S C Advances, vol. 8, no. 65, pp. 37277–37285, 2018, doi: 10.1039/c8ra08004f.

[7] K. Narang and F. Akhtar, “Freeze granulated zeolites X and A for biogas upgrading,” Molecules, vol. 25, no. 6, 2020, Art. no. 1378, doi: 10.3390/ molecules25061378.

[8] L. Zhen, A. Carlos, D. Gran, L. Ping, Y. Jianguo, and E. R. Alirio, “Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A,” Separation Science and Technology, vol. 46, no. 3, pp. 434–451, 2011, doi: 10.1080/01496395. 2010.513360.

[9] A. Hyungwoong and M. Jong-Ho, “Diffusion mechanism of carbon dioxide in zeolite 4A and CaX pellets,” Adsorption, vol. 10, no. 2, pp. 111–128, 2004.

[10] X. Xu, C. Song, R. Wincek, J. M. Andresen, B. G. Miller, and A.W. Scaroni, “Separation of CO2 from power plant flue gas using a novel CO2 “molecular basket” adsorbent,” Fuel Chemistry Division Preprints, vol. 48, pp. 162–163, 2003.

[11] G. P. Knowles, P. A. Webley, Z. Liang, and A. L. Chaffee, ACS Symposia. Washington, DC: American Chemical Society, 2012, pp. 177–205.

[12] G. W. Peterson, J. B. Decoste, T. G. Glover, Y. Huang, H. Jasuja, and K. S. Walton, “Effects of pelletization pressure on the physical and chemical properties of the metal–organic frameworks Cu3(BTC)2 and UiO-66,” Microporous and Mesoporous Materials, vol. 179, pp. 48–53, 2013.

[13] F. Rezaei, M. A. Sakwa-Novak, S. Bali, D. M. Duncanson, and C. W. Jones, “Shaping amine based solid CO2 adsorbents: Effects of pelletization pressure on the physical and chemical properties” Microporous and Mesoporous Materials, vol. 204, pp. 34–42, 2015.

[14] U. S. P. R. Arachchige and M. C. Melaaen, “Aspen plus simulation of CO2 removal from coal and gas fired power plants,” Energy Procedia, vol. 23, pp. 391–399, 2012, doi: 10.1016/j.egypro. 2012.06.060.

[15] A. Boonchuay, M. Srisawad, S. Sangsuradet, and P. Woratanakul, “Zeolite 13X and zeolite 5A as low-cost sustainable materials for cO2 adsorption simulation,” presented at the 8th International Conference on Green and Sustainable Innovation (ICGSI), Krabi, Thailand, Nov. 10–12, 2021.

[16] A. B. Hesam, H. Mohammad, and R. Niloofar, “Simulation of CH4/CO2 mixture separation by pressure swing adsorption in the Aspen Adsorption,” presented at the 16th Iranian National Congress of Chemical Engineering, Tehran, Iran, Jan. 22, 2019.

[17] S. Sangsuradet, B. Wongchalerm, T. Arunchai, T. Khamkenbong, and P. Worathanakul, “Optimization of CO2 adsorption and physical properties for pelletization of zeolite 5A,” Current Applied Science and Technology, vol. 22, no. 3, pp. 1–11, 2022, doi: 10.55003/cast.2022.03.22.014.

[18] Z. Liu, C. A. Grande, P. Li, J. Yu, and A. E. Rodrigues, “Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A,” Separation Science and Technology, vol. 46, no. 3, pp. 434–451, 2011, doi: 10.1080/01496395.2010.513360.

[19] H. Thakkar, S. Eastman, A. Hajari, A. A. Rownaghi, J. C. Knox, and F. Rezaei, “3Dprinted zeolite monoliths for CO2 removal from enclosed environments,” ACS Applied Materials & Interfaces, vol. 8, no. 41, pp. 27753–27761, 2016, doi: 10.1021/acsami.6b09647.

[20] K. Wood, Y. Liu, and Y. Yu. Design, Simulation and Optimizat ion of Adsorptive and Chromatographic Separations. New York: John Wiley & Sons, 2018.

[21] C. Grande, “Advances in pressure swing adsorption for gas separation,” ISRN Chemical Engineering, vol. 2012, 2012, Art. no. 982934, doi:10.5402/2012/982934.

[22] A. A. Norani, A. Ahmad, T. A. T. Abdullah, and A. Ripin, “Parametric study of CO2 separation using carbon molecular sieve, zeolite and silica gel,” IOP Conference Series: Materials Science and Engineering, vol. 808, 2020, Art. no. 012041, doi: 10.1088/1757-899x/808/1/012041.

[23] R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena. New York: Wiley, 1960, p. 511.

[24] D. D. Do, Adsorption Analysis: Equilibria and Kinetics. London: Imperial Coll Press, 1998.

[25] D. Stauffer and A. Aharony, Introduction to Percolation Theory. Boca Raton: CRC Press, 1994.

[26] F. G. Helfferich, Principles of Adsorption & Adsorption Processes. New York: John Wiley & Sons, 1985, pp. 523–524.

[27] F. M. Higgins, N. H. de Leeuw, and S. C. Parker, “Modelling the effect of water on cation exchange in zeolite A,” Journal of Materials Chemistry, vol. 12, no. 1, pp. 124–131, 2001, doi: 10.1039/b104069n.

[28] J. Bedia, M. Peñas-Garzón, A. Gómez-Avilés, J. Rodriguez, and C. Belver, “A review on the synthesis and characterization of biomass-derived carbons for adsorption of emerging contaminants from water,” Journal of Carbon Research, vol. 4, no. 4, 2018, Art. no. 63, doi: 10.3390/c4040063.

[29] P. S. Kumar, S. Ramalingam, C. Senthamarai, M. Niranjanaa, P. Vijayalakshmi, and S. Sivanesan, “Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions,” Desalination, vol. 261, no. 1–2, pp. 52–60, 2010, doi: 10.1016/j.desal.2010.05.032.

[30] M. Sekar, V. Sakthi, and S. Rengaraj, “Kinetics and equilibrium adsorption study of lead(II) onto activated carbon prepared from coconut shell,” Journal of Colloid and Interface Science, vol. 279, no. 2, pp. 307–313, 2004, doi: 10.1016/j.jcis. 2004.06.042.

[31] J. C. Moreno-Piraján and L. Giraldo, “Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions,” Journal of Analytical and Applied Pyrolysis, vol. 90, no. 1, pp. 42–47, 2011, doi: 10.1016/j.jaap.2010.10.004.

[32] C. Garnier, G. Finqueneisel, T. Zimny, Z. Pokryszka, S. Lafortune, P. D. C. Défossez, and E. C. Gaucher, “Selection of coals of different maturities for CO2 Storage by modelling of CH4 and CO2 adsorption isotherms,” International Journal of Coal Geology, vol. 87, no. 2, pp. 80– 86, 2011, doi: 10.1016/j.coal.2011.05.00.

[33] J. M. Martín-Martínez, “Adsorción física de gases y vapores por carbones,” Universidad de Alicante, Alicante, Spain, 1990.

[34] A. Charkh7i, M. Kazemeini, S. J. Ahmadi, and H. Kazemian, “Fabrication of granulated NaY zeolite nanoparticles using a new method and study the adsorption properties,” Powder Technology, vol. 231, pp. 1–6, 2012, doi: 10.1016/j.powtec.2012.06.041.

[35] S. Budsaereechai, K. Kamwialisak, and Y. Ngernyen, “Adsorption of lead, cadmium and copper on natural and acid activated bentonite clay,” Asia-Pacific Journal of Science and Technology, vol. 17, no. 5, pp. 800–810, 2012.

[36] M. Puccini, E. Stefanelli, M. Seggiani, and S. Vitolo, “Removal of CO2 from flue gas at high temperature using novel porous solids,” Chemical Engineering Transactions, vol. 47, pp. 139–144, 2016.

[37] H. Thakkar, S. Eastman, A. Hajari, A. A. Rownaghi, J. C. Knox, and F. Rezaei, “3Dprinted zeolite monoliths for CO2 removal from enclosed environments,” ACS Applied Materials & Interfaces, vol. 8, no. 41, pp. 27753–27761, 2016, doi: 10.1021/acsami.6b09647.

[38] K. Sepsirisuk, P. Vittaya, and T. Nipon. “Comparative studies on adsorption capacity of phorbol esters in Jatropha curcas seed oil with different type of bentonites,” presented at the 47th Kasetsart University Annual Conference, Bangkok, Thailand, Mar. 17–20, 2009.

[39] F. Rezaei, M. A. Sakwa-Novak, S. Bali, D. M. Duncanson, and C. W. Jones, “Shaping aminebased solid CO2 adsorbents: Effects of pelletization pressure on the physical and chemical properties,” Microporous and Mesoporous Materials, vol. 204, pp. 34–42, 2014, doi: 10.1016/j.micromeso.2014.10.047.

[40] C. Chen, D. W. Park, and W. S. Ahn, “Surface modification of a low-cost bentonite for postcombustion CO2 capture,” Applied Surface Science, vol. 283, pp. 699–704, 2013.

[41] E. Vilarrasa-García, J. A. Cecilia, D. C. S. Azevedo, C. L. Cavalcante, and E. Rodríguez- Castellón, “Evaluation of porous clay heterostructures modified with amine species as adsorbent for the CO2 capture,” Microporous Mesoporous Mater, vol. 249, pp. 25–33, 2017.

[42] G. Gómez-Pozuelo, E. S. Sanz-Pérez, A. Arencibia, P. Pizarro, R. Sanz, and D. P. Serrano, “CO2 adsorption on amine-functionalized clays,” Microporous Mesoporous Mater, vol. 282, pp. 38– 47, 2019.

[43] H. Wang, Z. G. Qu, J. Q. Bai, and Y. S. Qiu, “Combined grand canonical Monte Carlo and finite volume method simulation method for investigation of direct air capture of low concentration CO2 by 5A zeolite adsorbent bed,” International Journal of Heat and Mass Transfer, vol. 126, pp. 1219–1235, 2018, doi: 10.1016/j. ijheatmasstransfer.2018.06.052.

[44] M. Puccini, E. Stefanelli, M. Seggiani, and S. Vitolo, “Removal of CO2 from flue gas at high temperature using novel porous solids,” Chemical Engineering Transactions, vol. 47, pp. 139–144, 2016.

[45] F. A. A. Kareem, A. M. Shariff, S. Ullah, F. Dreisbach, L. K. Keong, N. Mellon, and S. Garg, “Experimental measurements and modeling of supercritical CO2 adsorption on 13X and 5A zeolites,” Journal of Natural Gas Science and Engineering, vol. 50, pp. 115–127, 2018, doi: 10.1016/j.jngse.2017.11.016.

[46] Z. Liu, C. A. Grande, P. Li, J. Yu, and A. E. Rodrigues, “Adsorption and desorption of carbon dioxide and nitrogen on zeolite 5A,” Separation Science and Technology, vol. 46, no. 3, pp. 434– 451, 2011, doi: 10.1080/01496395.2010.51336.

Full Text: PDF

DOI: 10.14416/j.asep.2022.04.004

Refbacks

  • There are currently no refbacks.