Page Header

Acid Hydrolysis of Pretreated Sugarcane Bagasse, Macroalgae Sargassum sp. and its Mixture in Bioethanol Production

Kyaw Wunna, Joseph Auresenia, Leonila Abella, Pag-asa Gaspillo, Kiyohiko Nakasaki


Sustainable biofuel feedstock could become a critical issue in the light of the recent fuel crisis. The use of mixed biomass could reinforce to overcome this issue. The present work examined the parallel use of agricultural residue sugarcane bagasse (SCB) and natural invasive marine seaweed Sargassum sp. (SSP) as a single feedstock and its mixture in two-step concentrated acid hydrolysis followed by yeast fermentation in order to produce reducing sugar with minimal formation of furfural, and bioethanol. In this work, alkali pretreated SCB and SSP were used as feedstock in acid hydrolysis. To investigate the influenced parameters of acid hydrolysis, biomass type (SCB, mixed biomass MB (SCB and SSP in 1:1 ratio by weight) and SSP), initial acid concentration (64–80 wt%), reaction time (30–90 min) and solid loading (10–20%w/w) were optimized by using Taguchi method. The optimized conditions were obtained with mixed biomass type, the initial acid concentration of 64 wt%, reaction time of 60 min and solid loading of 10%w/v. Under these conditions, 0.51 g/g of reducing sugar was achieved without furfural formation although ethanol yield was relatively low compared to that of Taguchi experimental runs. The result indicated that biomass type highly influenced the acid hydrolysis on sugar yield and furfural formation. This study provides the potential route for converting pretreated cellulosic biomass to value-added products, such as sugar and ethanol via the biorefinery process.


[1] N. Dave, R. Selvaraj, T. Varadavenkatesan, and R. Vinayagam, “A critical review on production of bioethanol from macroalgal biomass,” Algal Research, vol. 42, 2019, Art. no. 101606, doi: 10.1016/j.algal.2019.101606.

[2] F. J. Wolfaardt, L. G. L. Fernandes, S. K. C. Oliveira, X. Duret, J. F. Görgens, and J. M. Lavoie, “Recovery approaches for sulfuric acid from the concentrated acid hydrolysis of lignocellulosic feedstocks: A mini-review,” Energy Conversion and Management: X, vol. 10, 2021, Art. no. 100074, doi: 10.1016/j.ecmx. 2020.100074.

[3] R. Alrefai, B. Ky, and J. Stokes, “Integration approach of anaerobic digestion and fermentation process towards producing biogas and bioethanol with zero waste: Technical,” Journal of Fundamentals of Renewable Energy and Applications, vol. 7, no. 6, 2017, doi: 10.4172/2090-4541.1000243.

[4] B. V. Ayodele, M. A. Alsaffar, and S. I. Mustapa, “An overview of integration opportunities for sustainable bioethanol production from firstand second-generation sugar-based feedstocks,” Journal of Cleaner Production, vol. 245, 2020, Art. no. 118857, doi: 10.1016/j.jclepro. 2019.118857.

[5] T. V. Ramachandra and D. Hebbale, “Bioethanol from macroalgae: Prospects and challenges,” Renewable and Sustainable Energy Reviews, vol. 117, 2020, Art. no. 109479, doi: 10.1016/j.rser. 2019.109479.

[6] A. Duque, C. Álvarez, P. Doménech, P. Manzanares, and A. D. Moreno, “Advanced bioethanol production: From novel raw materials to integrated biorefineries,” Processes, vol. 9, no. 2, 2021, Art. no. 206, doi: 10.3390/pr9020206.

[7] M. C. Fernandes, M. D. Ferro, A. F. C. Paulino, H. T. Chaves, D. V. Evtuguin, and A. M. R. B. Xavier, “Comparative study on hydrolysis and bioethanol production from cardoon and rockrose pretreated by dilute acid hydrolysis,” Industrial Crops and Products, vol. 111, pp. 633–641, 2018, doi: 10.1016/j.indcrop.2017.11.037.

[8] K. L. Chin, P. S. H’ng, L. J. Wong, B. T. Tey, and M. T. Paridah, “Production of glucose from oil palm trunk and sawdust of rubberwood and mixed hardwood,” Applied Energy, vol. 88, no. 11, pp. 4222–4228, 2011, doi: 10.1016/j.apenergy. 2011.05.001.

[9] P. Pham, D. Tuyet‐Le, L. ThuHuong, and N. Trong‐Anh, “Recycling cassava stem to bioethanol by inoculating a novel xylose–glucose fermenting yeast at high initial concentration,” Environmental Progress & Sustainable Energy, vol. 39, no. 1, 2020, Art. no. 13286, doi: 10.1002/ ep.13286.

[10] S. Kumar, P. Dheeran, S. P. Singh, I. M. Mishra, and D. K. Adhikari, “Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse,” Renewable Energy, vol. 83, pp. 850–858, 2015, doi: 10.1016/j.renene.2015.05.033.

[11] S. Megawati, H. Sulistyo, and M. Hidayat, “Sulfuric acid hydrolysis of various lignocellulosic materials and its mixture in ethanol production,” Biofuels, vol. 6, no. 5–6, pp. 331–340, 2015, doi: 10.1080/17597269.2015.1110774.

[12] K. Tanaka, M. Koyama, P. T. Pham, A. P. Rollon, H. Habaki, R. Egashira, and K. Nakasaki, “Production of high-concentration bioethanol from cassava stem by repeated hydrolysis and intermittent yeast inoculation,” International Biodeterioration & Biodegradation, vol. 138, pp. 1–7, 2019, doi: 10.1016/j.ibiod.2018.12.007.

[13] K. S. Yadav, S. Naseeruddin, G. S. Prashanthi, L. Sateesh, and L. V. Rao, “Bioethanol fermentation of concentrated rice straw hydrolysate using co-culture of Saccharomyces Cerevisiae and Pichia Stipitis,” Bioresource Technology, vol. 102, no. 11, pp. 6473–6478, 2011, doi: 10.1016/j. biortech.2011.03.019.
[14] N. Sjulander and T. Kikas, “Origin, impact and control of lignocellulosic inhibitors in bioethanol production—A review,” Energies, vol. 13, no. 18, 2020, Art. no. 4751, doi: 10.3390/en13184751.

[15] Y. P. Wijaya, R. D. D. Putra, V. T. Widyaya, J. M. Ha, D. J. Suh, and C. S. Kim, “Comparative study on two-step concentrated acid hydrolysis for the extraction of sugars from lignocellulosic biomass,” Bioresource Technology, vol. 164, pp. 221–231, 2014, doi: 10.1016/j.biortech. 2014.04.084.

[16] J. Kong-Win Chang, X. Duret, V. Berberi, H. Zahedi-Niaki, and J. M. Lavoie, “Two-step thermochemical cellulose hydrolysis with partial neutralization for glucose production,” Frontiers in Chemistry, vol. 6, 2018, Art. no. 117, doi: 10.3389/fchem.2018.00117.

[17] C. Huang, Y. Zheng, W. Lin, Y. Shi, G. Huang, and Q. Yong, “Removal of fermentation inhibitors from pre-hydrolysis liquor using polystyrene divinylbenzene resin,” Biotechnology for Biofuels, vol. 13, no. 1, 2020, Art. no. 188, doi: 10.1186/s13068-020-01828-3.

[18] Y. Yu, Y. Long, and H. Wu, “Near-complete recovery of sugar monomers from cellulose and lignocellulosic biomass via a two-step process combining mechanochemical hydrolysis and dilute acid hydrolysis,” Energy & Fuels, vol. 30, no. 3, pp. 1571–1578, 2016, doi: 10.1021/acs. energyfuels.5b0219.
[19] FAO, “World food and agriculture – Statistical yearbook 2021,” FAO, Rome, Italy, 2021.

[20] M. O. S. Dias, A. V. Ensinas, S. A. Nebra, R. M. Filho, C. E. V. Rossell, and M. R. W. Maciel, “Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process,” Chemical Engineering Research and Design, vol. 87, no. 9, pp. 1206–1216, 2009, doi: 10.1016/j. cherd.2009.06.020.

[21] M. G. Borines, R. L. de Leon, and M. P. McHenry, “Bioethanol production from farming nonfood macroalgae in pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines,” Renewable and Sustainable Energy Reviews, vol. 15, no. 9, pp. 4432–4435, 2011, doi: 10.1016/j.rser. 2011.07.109.

[22] M. Wang, C. Hu, B. B. Barnes, G. Mitchum, B. Lapointe, and J. P. Montoya, “The great atlantic Sargassum belt,” Science, vol. 365, no. 6448, pp. 83–87, 2019, doi: 10.1126/science.aaw 7912.

[23] K. Wunna, K. Nakasaki, J. Auresenia, L. Abella, and P. Gaspilo, “Enhancement of delignification and glucan content of sugarcane bagasse by alkali pretreatment for bioethanol production,” ASEAN Journal of Chemical Engineering, vol. 21, no. 2, 2021, Art. no. 133, doi: 10.22146/ajche. 59093.

[24] K. Wunna, J. Auresenia, L. Abella, P. Gaspilo, and K. Nakasaki, “comparison of yield of reducing sugar obtained from hydrothermal and alkali pretreated brown seaweed Sargassum Sp.,” presented at the 9th Asian Federation of Biotechnology, Regional Symposium (ARS), Manila, Philippines, Feb. 9–11, 2017.

[25] A. Sluiter, H. Hames, R. Ruiz, C. Scarlata, J. Sluiter, D. Templeton, and D. Crocker, “Determination of structural carbohydrates and lignin in biomass,” National Renewable Energy Laboratory, Colorado, USA, 2008.

[26] M. Yanagisawa, K. Nakamura, O. Ariga, and K. Nakasaki, “Production of high concentrations of bioethanol from seaweeds that contain easily hydrolyzable polysaccharides,” Process Biochemistry, vol. 46, no. 11, pp. 2111–2116, 2011, doi: 10.1016/j.procbio.2011.08.001.

[27] G. L. Miller, “Use of dinitrosalicylic acid reagent for determination of reducing sugar,” Analytical Chemistry, vol. 31, no. 3, pp. 426–428, 1959, doi: 10.1021/ac60147a030.

[28] R. S. Rao, C. G. Kumar, R. S. Prakasham, and P. J. Hobbs, “The Taguchi methodology as a statistical tool for biotechnological applications: A critical appraisal,” Biotechnology Journal, vol. 3, no. 4, pp. 510–523, 2008, doi: 10.1002/ biot.200700201.

[29] M. Radhakumari, A. Ball, S. K. Bhargava, and B. Satyavathi, “Optimization of glucose formation in karanja biomass hydrolysis using Taguchi robust method,” Bioresource Technology, vol. 166, pp. 534–540, 2014, doi: 10.1016/j.biortech. 2014.05.065.

[30] R. K. Roy, A Primer on the Taguchi Method. New York: Society of Manufacturing Engineers, 1990. [31] M. Brodeur-Campbell, J. Klinger, and D. Shonnard, “Feedstock mixture effects on sugar monomer recovery following dilute acid pretreatment and enzymatic hydrolysis,” Bioresource Technology, vol. 116, pp. 320–326, 2012, doi: 10.1016/ j.biortech.2012.03.090.

[32] E. J. Panakkal, M. Sriariyanun, J. Ratanapoompinyo, P. Yasurin, K. Cheenkachorn, W. Rodiahwati, and P. Tantayotai, “Influence of Sulfuric acid pretreatment and inhibitor of sugarcane bagasse on the production of fermentable sugar and ethanol,” Applied Science and Engineering Progress, vol. 15, no. 1, 2021, doi: 10.14416/j.asep. 2021.07.006.

[33] R. M. Vera, R. Bura, and R. Gustafson, “Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes,” Biotechnology for Biofuels, vol. 8, no. 1, 2015, Art. no. 226, doi: 10.1186/s13068-015-0414-9.

[34] K. Saravanan, S. Duraisamy, G. Ramasamy, A. Kumarasamy, and S. Balakrishnan, “Evaluation of the saccharification and fermentation process of two different seaweeds for an ecofriendly bioethanol production,” Biocatalysis and Agricultural Biotechnology, vol. 14, pp. 444– 449, 2018, doi: 10.1016/j.bcab.2018.03.017.

[35] Q. Wang, W. Wang, X. Tan, Zahoor, X. Chen, Y. Guo, Q. Yu, Z. Yuan, and X. Zhuang, “Low-temperature sodium hydroxide pretreatment for ethanol production from sugarcane bagasse without washing process,” Bioresource Technology, vol. 291, 2019, Art. no. 121844, doi: 10.1016/ j.biortech.2019.121844.

[36] Y. Jugwanth, Y. Sewsynker-Sukai, and E. B. G. Kana, “Valorization of sugarcane bagasse for bioethanol production through simultaneous saccharification and fermentation: Optimization and kinetic studies,” Fuel, vol. 262, 2020, Art. no. 116552, doi: 10.1016/j.fuel.2019.116552.

[37] R. Shukla, M. Kumar, S. Chakraborty, R. Gupta, S. Kumar, D. Sahoo, and R. C. Kuhad, “Process development for the production of bioethanol from waste algal biomass of Gracilaria verrucosa,” Bioresource Technology, vol. 220, pp. 584–589, 2016, doi: 10.1016/j.biortech.2016.08.096.

[38] K. Świątek, S. Gaag, A. Klier, A. Kruse, J. Sauer, and D. Steinbach, “Acid hydrolysis of lignocellulosic biomass: Sugars and furfurals formation,” Catalysts, vol. 10, no. 4, 2020, Art. no. 437, doi: 10.3390/catal10040437.

[39] Q. A. Nguyen, J. Yang, and H. J. Bae, “Bioethanol production from individual and mixed agricultural biomass residues,” Industrial Crops and Products, vol. 95, pp. 718–725, 2017, doi: 10.1016/j.indcrop. 2016.11.040.

[40] E. Imamoglu and F. V. Sukan, “The effects of single and combined cellulosic agrowaste substrates on bioethanol production,” Fuel, vol. 134, pp. 477–484, 2014, doi: 10.1016/j.fuel.2014.05.087.

[41] R. Sindhu, M. Kuttiraja, P. Binod, R. K. Sukumaran, and A. Pandey, “Bioethanol production from dilute acid pretreated indian bamboo variety (Dendrocalamus Sp.) by separate hydrolysis and fermentation,” Industrial Crops and Products, vol. 52, pp. 169–176, 2014, doi: 10.1016/j.indcrop. 2013.10.021.

[42] Y. Xu and D. Wang, “Integrating starchy substrate into cellulosic ethanol production to boost ethanol titers and yields,” Applied Energy, vol. 195, pp. 196–203, 2017, doi: 10.1016/ j.apenergy.2017.03.035.
[43] J. H. Hwang, A. N. Kabra, M. K. Ji, J. Choi, M. M. El-Dalatony, and B. H. Jeon, “Enhancement of continuous fermentative bioethanol production using combined treatment of mixed microalgal biomass,” Algal Research, vol. 17, pp. 14–20, 2016, doi: 10.1016/j.algal.2016.03.029.

[44] R. Muktham, A. S. Ball, S. K. Bhargava, and S. Bankupalli, “Bioethanol production from non-edible de-oiled Pongamia pinnata seed residue-optimization of acid hydrolysis followed by fermentation,” Industrial Crops and Products, vol. 94, pp. 490–497, 2016, doi: 10.1016/j.indcrop. 2016.09.019.

[45] S. C. Pereira, L. Maehara, C. M. M. Machado, and C. S. Farinas, “2G ethanol from the whole sugarcane lignocellulosic biomass,” Biotechnology for Biofuels, vol. 8, no. 1, 2015, Art. no. 44, doi: 10.1186/s13068-015-0224-0.

[46] H. B. Aditiya, T. M. I. Mahlia, W. T. Chong, H. Nur, and A. H. Sebayang, “Second generation bioethanol production: A critical review,” Renewable and Sustainable Energy Reviews, vol. 66, pp. 631–653, 2016, doi: 10.1016/ j.rser.2016.07.015.

Full Text: PDF

DOI: 10.14416/j.asep.2022.09.003


  • There are currently no refbacks.