Page Header

Nanomaterials’ Application in Architectural Façades in Italy

Djamil Ben Ghida


Nanotechnology and nanomaterials are revolutionizing the construction industry by improving material's durability, strength, and performance. Nanomaterials have a direct impact on building's energy efficiency, façade aesthetics, urban attractiveness, urban pollution, and built heritage preservation. In this paper, it will be confirmed that nanomaterials are providing cutting-edge technical solutions for the European building stock by addressing current biodeterioration and weathering of buildings, reducing CO2 emissions, and having a positive impact on the building sector as a whole, including structure, surface coatings, energy consumption, and COVID-19 outbreak. The methodology used is exploratory and descriptive, with two Italian case studies analysis thrown in for good mixed-methods analysis. The empirical analysis investigates the environmental health and economic benefits of deploying nanotechnology systems in Italian building facades. The objective of the research is to analyze the characteristics and functions of nanoparticles; demonstrating how nano-features can lower energy use, improve contextual urban quality, preserve architectural historical identity, mitigate coronavirus outbreaks, and eventually change the future design thinking process of architects. The paper's originality stems from its synoptic approach and holistic analysis of nanomaterials utilized in Italian façade structures.


[1] M. G. Al-Marri, M. A. Al-Ghouti, V. C. Shunmugasamy, and N. Zouari, “Date pits based nanomaterials for thermal insulation applications—Towards energy efficient buildings in Qatar,” PLOS ONE, vol. 16, no. 3, Mar. 2021, Art. no. e0247608, doi: 10.1371/journal.pone.0247608.

[2] M. Berra, F. Carassiti, T. Mangialardi, A.E. Paolini, and M. Sebastiani, “Effects of nanosilica addition on workability and compressive strength of Portland cement pastes,” Construction and Building Materials, vol. 35, pp. 666–675, Oct. 2012, doi: 10.1016/j.conbuildmat.2012.04.132.

[3] H. Shao, C. Binmeng, B. Li, S. Tang, and Z. Li, “Influence of dispersants on the properties of CNTs reinforced cement-based materials,” Construction and Building Materials, vol. 131, pp. 186–194, Jan. 2017, doi: 10.1016/j.conbuildmat. 2016.11.053.

[4] Y. Zhang, L. Wu, X. Wang, J. Yu, and B. Ding, “Super hygroscopic nanofibrous membranebased moisture pump for solar-driven indoor dehumidification,” Nature Communications, vol. 11, Jul. 2020, Art. no. 3302, doi: 10.1038/ s41467-020-17118-3.

[5] J. Y. Chang, Y. D. Kuan, C. C. Lan, H. J. Li, Y. K. Hsu, C. Y. Chen, E. T. Shen, and K. Y. Lin, “Discussion of the energy-saving benefits of heat insulating coating for building windows,” MATEC Web of Conferences, vol. 44, Mar. 2016, Art. no. 02034, doi: 10.1051/matecconf/ 20164402034.

[6] E. M. Elhennawi and M. M. Aboulnaga, “Impacts of exploiting nanocoating on buildings’ façades to improve air quality in megacities, mitigate climate change and attain livability,” in Green Buildings and Renewable Energy, A. Sayigh, Eds. Cham, Switzerland: Springer, Dec. 2019, pp. 293–304, doi: 10.1007/978-3-030-30841-4_21.

[7] A. D. Chintagunta, S. M. Krishna, S. Nalluru, and N. S. S. Kumar, “Nanotechnology: An emerging approach to combat COVID-19,” Emergent Materials, vol. 4, no. 1, pp. 119–130, Feb. 2021, doi: 10.1007/s42247-021-00178-6.

[8] I. Franco-Castillo, L. Hierro, J. M. de la Fuente, A. Seral-Ascaso, and S. G. Mitchell, “Perspectives for antimicrobial nanomaterials in cultural heritage conservation,” Chem, vol. 7, no. 3, pp. 629–669, Mar. 2021, doi: 10.1016/ j.chempr.2021.01.006.

[9] M. E. David, R. M. Ion, R. M. Grigorescu, L. Iancu, and E. R. Andrei, “Nanomaterials used in conservation and restoration of cultural heritage: An up-to-date overview,” Materials, vol. 13, no. 9, Apr. 2020, Art. no. 2064, doi: 10.3390/ma13092064.

[10] J. Lee, S. Mahendra, and P. J. Alvarez, “Nanomaterials in the construction industry: A review of their applications and environmental health and safety considerations,” ACS Nano, vol. 4, no. 7, pp. 3580–3590, Jul. 2010, doi: 10.1021/ nn100866w.

[11] A. Mohajerani, L. Burnett, J. V. Smith, H. Kurmus, J. Milas, A. Arulrajah, S. Horpibulsuk, and A. A. Kadir, “Nanoparticles in construction materials and other applications, and implications of nanoparticle use,” Materials, vol. 12, no. 19, Sep. 2019, Art. no. 3052, doi: 10.3390/ma 12193052

[12] O. S. Olafusi, E. R. Sadiku, J. Snyman, J. M. Ndambuki, and W. K. Kupolati, “Application of nanotechnology in concrete and supplementary cementitious materials: A review for sustainable construction,” SN Applied Sciences, vol. 1, May 2019, Art. no. 580, doi: 10.1007/s42452-019- 0600-7.

[13] F. Pacheco-Torgal and S. Jalali, “Nanotechnology: Advantages and drawbacks in the field of construction and building materials,” Construction and Building Materials, vol. 25, no. 2, pp. 582– 590, Feb. 2011, doi: 10.1016/j.conbuildmat. 2010.07.009.

[14] M. Rossetti, “Nanotechnologies applied to building sector,” DISEGNARECON, vol. 2, no. 3, pp. 1–4, Jun. 2009, doi: 10.6092/issn.1828- 5961/1687

[15] M. Losasso, Percorsi Dell’innovazione: Industria Edilizia, Tecnologie, Progetto. Naples: Clean, 2010.
[16] V. Mirabile, “Il design della Tecno-Natura. Nuovi scenari del design sostenibile nell’epoca delle nanotecnologie,” Ph.D. dissertation, Department of Design, University of Palermo, Palermo, Italy, 2011.

[17] United Nations, “Transforming our world: The 2030 agenda for sustainable development,” Tech. Rep. A/RES/70/1, Oct. 2015.

[18] UNESCO, “Discussion sur la valeur universelle exceptionnelle (Recueil de décisions importantes sur la conservation des biens du patrimoine culturel inscrits sur la Liste du patrimoine mondial en péril de l’UNESCO),” Comité Du Patrimoine Mondial, Seville, Spain, Tech. Rep. WHC-09/33.COM/9, May 2009.

[19] C. Machat and J. Ziesemer, Heritage at Risk. World Report 2016-2019 on Monuments and Sites in Danger. Berlin, Germany: Hendrik Bäßler Verlag, 2020.

[20] Directive, “Directive (EU) 2018/844 of the European Parliament and of the Council of 30 May 2018 amending Directive 2010/31/EU on the energy performance of buildings and Directive 2012/27/EU on energy efficiency,” Tech. Rep. PE/4/2018/REV/1, Jun. 2018.

[21] D. Benghida, “The urban identity recovery in Seoul: The case of the outdoor markets,” in 13th Docomomo International Conference Seoul: Expansion and Conflict, Sep. 2014, pp. 227–231.

[22] D. B. Guida, “Augmented reality and virtual reality: A 360° Immersion into western history of architecture,” International Journal of Emerging Trends in Engineering Research, vol. 8, pp. 6051–6055, Sep. 2020, doi: 10.30534/ ijeter/2020/187892020.

[23] D. Benghida and S. Benghida, “La créativité dans la réhabilitation urbaine: Le Viaduc des Arts à Paris,” Association Culturelle Franco-Coréenne, vol. 35, no. 2, pp. 215–243, Nov. 2017, doi: 10.18022/acfco.2017.35.1.008.

[24] J. F. Olascoaga, “Development of a new approach for appraising the aesthetic quality of cities,” Ph.D. dissertation, Graduate Faculty, Texas Tech University, Texas, USA, 2003.

[25] UNESCO, “UNESCO World Heritage Centre - World Heritage List,” 2022. [Online]. Available:

[26] A. Screpanti and A. De Marco, “Corrosion on cultural heritage buildings in Italy: A role for ozone?,” Environmental Pollution, vol. 157, no. 5, pp. 1513–1520, May 2009, doi: 10.1016/j.envpol. 2008.09.046.
[27] A. Borri and M. Corradi, “Architectural heritage: A discussion on conservation and safety,” Heritage, vol. 2, no. 1, pp. 631–647, Feb. 2019, doi: 10.3390/heritage2010041.

[28] M. D. Monte, “The cultural heritage: Causes of damage,” in Science, Technology and European Cultural Heritage. Bologna, Italy: European Symposium, pp. 78–89, 1991, doi: 10.1016/ B978-0-7506-0237-2.50015-0.

[29] M. Steiger, A. E. Charola, and K. Sterflinger, “Weathering and deterioration,” in Stone in Architecture, S. Siegesmund, R. Snethlage, Eds. Berlin, Heidelberg: Springer-Verlag, 2011, pp. 227–316, doi: 10.1007/978-3-642-14475-2_4.

[30] P. Tiano, “Biodegradation of cultural heritage: Decay mechanisms and control methods,” ARCCHIP, Prague, Czech Republic, Apr. 2002.

[31] Passive House Institute, “Certified passive house. Criteria for non-residential passive house buildings,” Passive House Institute, Darmstadt, Germany, Sep. 2013.

[32] Swiss Nanotech, “Tecnologie a controllo solare – swissnanotech,” 2021. [Online]. Available:

[33] A. R. Abdin, A. R. El Bakery, and M. A. Mohamed, “The role of nanotechnology in improving the efficiency of energy use with a special reference to glass treated with nanotechnology in office buildings,” Ain Shams Engineering Journal, vol. 9, no. 4, pp. 2671–2682, Dec. 2018, doi:10.1016/j.asej.2017.07.001.

[34] F. C. Vosper and B. J. Wiersma, “Residential heat loss,” University of Minnesota, Minnesota, USA, Tech. Rep. 3399, 1988.

[35] Y. Kwan and L. Guan, “Design a zero energy house in Brisbane, Australia,” Procedia Engineering, vol. 121, pp. 604–611, 2015, doi: 10.1016/j.proeng.2015.08.1046.

[36] NAIMA, “The facts about insulation and air infiltration,” NAIMA, Virginia, USA, Tech. Rep. BI 480 6/99, 2016.

[37] B. Miller, “Cooling your home naturally,” DOE-NREL, USA, Tech. Rep DOE/CH10093- 221FS186, 1994.

[38] S. Rashidi, J. A. Esfahani, and N. Karimi, “Porous materials in building energy technologies— A review of the applications, modelling and experiments,” Renewable and Sustainable Energy Reviews, vol. 91, pp. 229–247, Aug. 2018, doi: 10.1016/j.rser.2018.03.092.

[39] U.S. Department of Energy, “Increasing efficiency of building systems and technologies,” in Quadrennial Technology Review-An Assessment of Energy Technologies and Research Opportunities. Washington DC: Department of Energy, Sep. 2015, pp. 143–181.

[40] A. Boeri and D. Longo, “Eco-technologies for energy efficient buildings in Italy,” WIT Transactions on Ecology and the Environment, vol. 128, pp. 399–410, 2010, doi: 10.2495/ ARC100341.

[41] A. Rashwan, O. Farag, and W. S. Moustafa, “Energy performance analysis of integrating building envelopes with nanomaterials,” International Journal of Sustainable Built Environment, vol. 2, no. 2, pp. 209–223, Dec. 2013, doi: 10.1016/j.ijsbe.2013.12.001.

[42] Barozzi Group, “Pitture termoriflettenti trattamento tetto pareti interne esterne,” 2019. [Online]. Available: https://www.nanotechinside. com/pitture-termoriflettenti-trattamento-tettopareti- interne-esterne/

[43] Syneffex, “Energy Protect building insulation coating for walls and more,” 2019. [Online]. Available:

[44] Barozzi Group, “Pitture termoisolanti – Fondo fissativo aggrappante antimuffa pareti cartongesso intonachino silossanico rasante,” 2019. [Online]. Available: prezzi-pitture-vernici-termoisolanti-traspirantiper- muri-umidi/

[45] M. Casini, “Nano insulating materials and energy retrofit of buildings,” AIP Conference Proceedings, vol. 1749, Jun. 2016, Art. no. 020005, doi: 10.1063/1.4954488.

[46] I. Hincapié, T. Künniger, R. Hischier, D. Cervellati, B. Nowack, and C. Som, “Nanoparticles in facade coatings: A survey of industrial experts on functional and environmental benefits and challenges,” Journal of Nanoparticle Research, vol. 17, Art. no. 287, Jul. 2015, doi: 10.1007/s11051-015-3085-3.

[47] W. Guo, X. Qiao, Y. Huang, M. Fang, and X. Han, “Study on energy saving effect of heat-reflective insulation coating on envelopes in the hot summer and cold winter zone,” Energy and Buildings, vol. 50, pp. 196–203, Jul. 2012, doi: 10.1016/j.enbuild.2012.03.035.

[48] N. Ali, M. Sebzali, H. Bourisli, A. Safar, and Z. A. Ebrahem, “Nanocoating: An energy efficient solution towards reducing buildings electrical consumption in the state of Kuwait,” in 2020 Advances in Science and Engineering Technology International Conferences (ASET), 2020, pp. 1–4. doi: 10.1109/ASET48392.2020.9118309.

[49] R. Fernando, “Nanocomposite and nanostructured coatings: Recent advancements,” in Nanotechnology Applications in Coatings, R. H. Fernando, L.O. Sung, Eds. Jun. 2009, pp. 2–21, doi: 10.1021/ bk-2009-1008.ch001.

[50] S. Mann, “Nanotechnology and construction,” European Nanotechnology Gateway-Nanoforum, UK, Nov. 2006.

[51] D. B. Ghida, “Heat recovery ventilation for energy-efficient buildings: Design, operation and maintenance,” International Journal of Innovative Technology and Exploring Engineering, vol. 9, no. 1, pp. 3713–3715, 2019, doi: 10.35940/ijitee.A4795.119119.

[52] NanoCare, “Building protection with nano coatings,” 2019. [Online]. Available: https://

[53] CCM, “7626 Easy Clean Graffiti Protection,” 2020. [Online]. Available: https://www.ccmliquid-

[54] CTC Nanotechnology, “Building glass,” 2015. [Online]. Available: https://www.glas-nanover

[55] M. Gunell, J. Haapanen, K. J. Brobbey, J. J. Saarinen, M. Toivakka, J. M. Mäkelä, P. Huovinen, and E. Eerola, “Antimicrobial characterization of silver nanoparticle-coated surfaces by “touch test” method,” Nanotechnology, Science and Applications, vol. 2017, no. 10, pp. 137–145, Nov. 2017, doi: 10.2147/NSA.S139505.

[56] E. Taylor and T. J. Webster, “Reducing infections through nanotechnology,” International Journal of Nanomedicine, vol. 6, pp. 1463–1473, 2011.

[57] R. Vazquez-Munoz and J. L. Lopez-Ribot, “Nanotechnology as an alternative to reduce the spread of COVID-19,” Challenges, vol. 11, no. 2, Jul. 2020, Art. no. 15, doi: 10.3390/ challe11020015.

[58] G. Durango-Giraldo, A. Cardona, J. F. Zapata, J. F. Santa, and R. Buitrago-Sierra, “Titanium dioxide modified with silver by two methods for bactericidal applications,” Heliyon, vol. 5, no. 5, May 2019, Art. no. e01608, doi: 10.1016/j.heliyon. 2019.e01608.

[59] L. Bonilla-Gameros, P. Chevallier, A. Sarkissian, and D. Mantovani, “Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review,” Nanomedicine: Nanotechnology, Biology and Medicine, vol. 24, Feb. 2020, Art. no. 102142, doi: 10.1016/j.nano. 2019.102142.

[60] A. Wold, “Photocatalytic properties of titanium dioxide (TiO2),” Chemistry of Materials, vol. 5, no. 3, pp. 280–283, Mar. 1993, doi: 10.1021/ cm00027a008.

[61] L. Dyshlyuk, O. Babich, S. Ivanovade, N. Vasilchenco, V. Atuchin, I. Korolkov, D. Russakov, and A. Prosekov, “Antimicrobial potential of ZnO, TiO2 and SiO2 nanoparticles in protecting building materials from biodegradation,” International Biodeterioration & Biodegradation, vol. 146, Jan. 2020, Art. no. 104821, doi: 10.1016/j.ibiod.2019.104821.

[62] W. Johansson, A. Peralta, B. Jonson, S. Anand, L. Österlund, and S. Karlsson, “Transparent TiO2 and ZnO thin films on glass for UV protection of PV modules,” Frontiers in Materials, vol. 6, Oct. 2019, Art. no. 259, doi: 10.3389/ fmats.2019.00259.

[63] A. Augustyniak, J. Jablonska, K. Cendrowski, A. Głowacka, D. Stephan, E. Mijowska, and P. Sikora, “Investigating the release of ZnO nanoparticles from cement mortars on microbiological models,” Applied Nanoscience, vol. 12, pp. 489–502, Mar. 2022, doi: 10.1007/s13204-021-01695-w.

[64] H. Yang, S. Zhu, and N. Pan, “Studying the mechanisms of titanium dioxide as ultravioletblocking additive for films and fabrics by an improved scheme,” Journal of Applied Polymer Science, vol. 92, no. 5, pp. 3201–3210, Jun. 2004, doi: 10.1002/app.20327.

[65] H. A. Foster, I. B. Ditta, S. Varghese, and A. Steele, “Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity,” Applied Microbiology and Biotechnology, vol. 90, pp. 1847–1868, Jun. 2011, doi: 10.1007/s00253-011-3213-7.

[66] H. A. Foster, D. W. Sheel, P. Evans, P. Sheel, S. Varghese, S. O. Elfakhri, J. L. Hodgkinson, and H. M. Yates, “Antimicrobial activity against hospital-related pathogens of dual layer CuO/ TiO2 coatings prepared by CVD,” Chemical Vapor Deposition, vol. 18, no. 4–6, pp. 140–146, Jun. 2012, doi: 10.1002/cvde.201106978.

[67] P. Maravelaki-Kalaitzaki, Z. Agioutantis, E. Lionakis, M. Stavroulaki, and V. Perdikatsis, “Physico-chemical and mechanical characterization of hydraulic mortars containing nano-titania for restoration applications,” Cement and Concrete Composites, vol. 36, pp. 33–41, Feb. 2013, doi: 10.1016/j.cemconcomp.2012.07.002.

[68] C. Del Cacho, O. Geiss, P. Leva, S. Tirendi, and J. Barrero-Moreno, “Nanotechnology in manufacturing paints for eco-efficient buildings,” in Nanotechnology in Eco-Efficient Construction, F. Pacheco-Torgal, M. V. Diamanti, A. Nazari, C. G. Granqvist, A. Pruna, and S. Amirkhanian, Eds. Illinois: Woodhead, 2013, pp. 343–363, doi: 10.1533/9780857098832.3.343.

[69] M. Y. L. Chew, S. M. A. Conejos, and J. S. L. Law, “Green maintainability design criteria for nanostructured titanium dioxide (TiO2) façade coatings,” International Journal of Building Pathology and Adaptation, vol. 35, no. 2, pp. 139–158, May 2017, doi: 10.1108/IJBPA- 01-2017-0001.

[70] M. A. Aldoasri, S. S. Darwish, M. A. Adam, N. A. Elmarzugi, and S. M. Ahmed, “Protecting of marble stone facades of historic buildings using multifunctional TiO2 Nanocoatings,” Sustainability, vol. 9, no. 11, Nov. 2017, doi: 10.3390/su9112002.

[71] T. J. Vulić, S. B. Vučetić, B. B. Miljević, and J. G. Ranogajec, “Novel photocatalytic coating on façade paints: Functional properties and durability,” Acta Periodica Technologica, vol. 49, pp. 181–191, 2018, doi: 10.2298/APT1849181V.

[72] K. W. Shah, G. F. Huseien, and T. Xiong, “Functional nanomaterials and their applications toward smart and green buildings,” in New Materials in Civil Engineering. Oxford, UK: Butterworth-Heinemann, 2020, pp. 395– 433, doi: 10.1016/B978-0-12-818961-0.00011-9.

[73] O. Demyanenko, N. Kopanitsa, Y. Sarkisov, and G. Kopanitsa, “Peculiarities of silica additives application in building mixes production,” AIP Conference Proceedings, vol. 1800, 2017, Art. no. 020010, doi: 10.1063/1.4973026.

[74] A. Nazari, S. Riahi, S. Riahi, S. Shamekhi, and A. Khademno, “Benefits of Fe2O3 nanoparticles in concrete mixing matrix,” Journal of American Science, vol. 6, no. 4, pp. 102–105, 2010.

[75] L. Chen, F. Chenli, Z. Luo, and Y. Xin, “Study of nano-alumina impact on the performance of a CaCO3-epoxy composite coating,” Nanomaterials and Nanotechnology, vol. 6, Jan. 2016, doi: 10.5772/63786.

[76] G. D. Da Silva, E. J. Guidelli, G. M. de Queiroz- Fernandes, M. R. M. Chaves, O. Baffa, and A. Kinoshita, “Silver nanoparticles in building materials for environment protection against microorganisms,” International Journal of Environmental Science and Technology, vol. 16, pp. 1239–1248, Mar. 2019, doi: 10.1007/s13762- 018-1773-0.

[77] E. Kızılkonca and F. B. Erim, “Development of anti-aging and anticorrosive nanoceria dispersed alkyd coating for decorative and industrial purposes,” Coatings, vol. 9, no. 10, Sep. 2019, Art. no. 610, doi: 10.3390/coatings9100610.

[78] R. Polat, R. Demirboga, and F. Karagöl, “The effect of nano-MgO on the setting time, autogenous shrinkage, microstructure and mechanical properties of high performance cement paste and mortar,” Construction Building Materials, vol. 156, pp. 208–218, Dec. 2017, doi: 10.1016/j.conbuildmat. 2017.08.168.

[79] A. J. Noori and F. A. Kareem, “The effect of magnesium oxide nanoparticles on the antibacterial and antibiofilm properties of glass-ionomer cement,” Heliyon, vol. 5, no. 10, Oct. 2019, Art. no. e02568, doi: 10.1016/j.heliyon.2019. e02568.

[80] Z. X. Tang and B. F. Lv, “MgO nanoparticles as antibacterial agent: preparation and activity,” Brazilian Journal of Chemical Engineering, vol. 31, no. 3, pp. 591–601, Sep. 2014, doi: 10.1590/0104-6632.20140313s00002813.

[81] P. Baglioni, D. Chelazzi, and R. Giorgi, Nanotechnologies in the Conservation of Cultural Heritage: A Compendium of Materials and Techniques. Dordrecht, Netherlands: Springer, 2015, pp. 15–59, doi: 10.1007/978- 94-017-9303-2.

[82] I. Cosentino, F. Liendo, M. Arduino, L. Restuccia, S. Bensaid, F. Deorsola, and G. A. Ferro, “Nano CaCO3 particles in cement mortars towards developing a circular economy in the cement industry,” Procedia Structural Integrity, vol. 26, pp. 155–165, 2020, doi: 10.1016/j.prostr. 2020.06.019.

[83] E. N. Kani, A. H. Rafiean, A. Alishah, S. H. Astani, and S. H. Ghaffar “The effects of Nano-Fe2O3 on the mechanical, physical and microstructure of cementitious composites,” Construction and Building Materials, vol. 266, Jan. 2021, Art. no. 121137, doi: 10.1016/j.conbuildmat. 2020.121137.

[84] P. Sikora, E. Horszczaruk, K. Cendrowski, and E. Mijowska, “The influence of nano-Fe3O4 on the microstructure and mechanical properties of cementitious composites,” Nanoscale Research Letters, vol. 11, Apr. 2016, Art. no. 182, doi: 10.1186/s11671-016-1401-1.

[85] M. R. Irshidat and M. H. Al-Saleh, “Influence of nanoclay on the properties and morphology of cement mortar,” KSCE Journal of Civil Engineering, vol. 22, pp. 4056–4063, Oct. 2018, doi: 10.1007/s12205-018-1642-x.

[86] P. de A. Carísio, O. A. M. Reales, and R. D. T. Filho, “Evaluation of mechanical properties of cement-based composites with nanomaterials,” in Nanotechnology in Cement-Based Construction, A. D'Alessandro, A. Luigi Materazzi, F. Ubertini, Eds. Singapore: Jenny Stanford Publishing, 2020, pp. 143–170.
[87] M. Khazaei, M. T. Sadeghi, and M. S. Hosseinsi, “Stable superhydrophilic coating on superhydrophobic porous media by functionalized nanoparticles,” Materials Research Express, vol. 5, no. 1, Jan. 2018, Art. no. 015019.

[88] European Environment Agency, “Air pollution,” 2020. [Online]. Available: https://www.eea.europa. eu/themes/air/intro

[89] J. Salton, “Graffiti-proofing our history,” 2009. 2021. [Online]. Available: graffiti-proofing-historic-buildings/12816/

[90] H. Flippo, “Das Bombing: Graffiti in Germany and Europe,” 2014. [Online]. Available: https:// and-europe/

[91] A. Peregrine, “Is graffiti ruining Paris?,” 2016. [Online]. Available: travel/destinations/europe/france/paris/articles/ Is-graffiti-ruining-Paris/ [92] La Nazione Firenze, “Graffiti, La Nazione in campo per pulire la città,” 2019. [Online]. Available: cronaca/muri-graffiti-segnalazioni-1.4743493

[93] R. Giorio, “Indagini in laboratorio e in cantiere per la verifica dell’efficacia di un trattamento idrorepellente nanotecnologico,” Center Materials Research, Thiene-Vicenza, Italy, Apr. 2016.

[94] A. Lazzeri, M. B. Coltelli, R. Bevilacqua, S. Chirico, A. Rovazzani, G. Severini, A. Sutter, M. Bartolini, L. Conti, L. Festa, M. Ioele, A. Pujia, and G. Sidoti, “European project nano-cathedral: Nanomaterials for conservation of european architectural heritage: Pisa, the experience of a mediterranean cathedral: Natural and anthropogenic hazards and sustainable preservation,” in 10th International Symposium on the Conservation of Monuments in the Mediterranean Basin. MONUBASIN 2017, M. Koui, F. Zezza, D. Kouis, Eds. Cham, Switzerland: Springer, Dec. 2018, pp. 143–152, doi: 10.1007/978-3-319-78093-1_14.

[95] K. K. Sand, J. D. Rodriguez-Blanco, E. Makovicky, L. G. Benning, and S. L. S. Stipp, “Crystallization of CaCO3 in water–alcohol mixtures: Spherulitic growth, polymorph stabilization, and morphology change,” Crystal Growth & Design, vol. 12, no. 2, pp. 842–853, Feb. 2012, doi: 10.1021/cg 2012342.

[96] R. Giorgi, L. Dei, and P. Baglioni, “A new method for consolidating wall paintings based on dispersions of lime in alcohol,” Studies in Conservation, vol. 45, no. 3, pp. 154–161, Jul. 2013, doi: 10.1179/sic.2000.45.3.154.

[97] C. Poggio, M. Colombo, C. R. Arciola, T. Greggi, A. Scribante, and A. Dagna, “Copper-alloy surfaces and cleaning regimens against the spread of SARS-CoV-2 in dentistry and orthopedics. From fomites to anti-infective nanocoatings,” Materials, vol. 13, no. 15, Jul. 2020, Art. no. 3244, doi: 10.3390/ma13153244.

[98] M. Kchaou, K. Abuhasel, M. Khadr, F. Hosni, and M. Alquraish, “Surface disinfection to protect against microorganisms: Overview of traditional methods and issues of emergent nanotechnologies,” Applied Sciences, vol. 10, no. 17, Aug. 2020, Art. no. 6040, doi: 10.3390/app10176040.

[99] P. Merkl, S. Long, G. M. McInerney, and G. A. Sotiriou, “Antiviral activity of silver, copper oxide and zinc oxide nanoparticle coatings against SARS-CoV-2,” Nanomaterials, vol. 11, no. 5, May 2021, Art. no. 1312, doi: 10.3390/ nano11051312.

[100] P. Prasher and M. Sharma, “Nanotechnologybased self-sterilizing surfaces and their potential in combating coronavirus disease 2019,” Nanomedicine, vol. 16, no. 14, pp. 1183–1186, Jun. 2021, doi: 10.2217/nnm-2021-0079.

[101] K. Shirvanimoghaddam, M. K. Akbari, R. Yadav, A. K. Al-Tamimi, and M. Naebe, “Fight against COVID-19: The case of antiviral surfaces,” AIP APL Materials, vol. 9, Mar. 2021, Art. no. 031112, doi: 10.1063/5.0043009.

[102] S. Pathak, G. C. Saha, M. B. A. Hadi, and N. K. Jain, “Engineered nanomaterials for aviation industry in COVID-19 context: A time-sensitive review,” Coatings, vol. 11, no. 4, Apr. 2021, Art. no. 382, doi: 10.3390/coatings 11040382.

[103] Nanohub, “Reference list,” 2021. [Online]. Available: uploads/2021/04/nanohub_References_eng

[104] M. Y. Z. Abouleish, “Indoor air quality and COVID-19,” Public Health, vol. 191, pp. 1–2, 2021, doi: 10.1016/j.puhe.2020.04.047.

[105] R. Liu and A. Runion, “Coating performance on existing steel bridge superstructures,” FHWA, McLean, VA-USA, Tech. Rep. FHWAHRT- 20-065, Sep. 2020.

[106] FHWA, “Nano-enhanced repair materials. pursuing a superior coating for corrosion prevention,” Office of Infrastructure Research and Development, Federal Highway Administration. The Exploratory Advanced Research Program Fact Sheet, USA, Tech. Rep. FHWA-HRT- 11-063 HRTM-04/08-11(1M)E, 2011.
[107] FHWA, “Greener protection for steel bridges. testing nano-enhanced corrosion-resistant coatings,” Federal Highway Administration, USA, Tech. Rep. FHWA-HRT-13-064 HRTM- 30/05-13(1M)E, 2013.

[108] D. Huntington, “Sustainable graffiti management solutions for public areas,” Street Art and Urban Creativity, vol. 4, no. 1, pp. 46–74, Dec. 2018, doi: 10.25765/sauc.v4i1.122.

[109] V. H. Grassian, A. Adamcakova-Dodd, J. M. Pettibone, P. I. O’shaughnessy, and P. S. Thorne, “Inflammatory response of mice to manufactured titanium dioxide nanoparticles: Comparison of size effects through different exposure routes,” Nanotoxicology, vol. 1, no. 3, pp. 211–226, Jul. 2009, doi: 10.1080/174353 90701694295.

[110] N. Wilson, “Nanoparticles: Environmental problems or problem solvers?,” BioScience, vol. 68, no. 4, pp. 241–246, Mar. 2018, doi: 10.1093/biosci/biy015.

[111] G. Pandey and P. Jain, “Assessing the nanotechnology on the grounds of costs, benefits, and risks,” Beni-Suef University Journal of Basic and Applied Sciences, vol. 9, Dec. 2020, Art. no. 63, doi: 10.1186/s43088-020-00085-5.

[112] A. Malakar, S. R. Kanel, C. Ray, D. D. Snow, and M. N. Nadagouda, “Nanomaterials in the environment, human exposure pathway, and health effects: A review,” Science of the Total Environment, vol. 759, Mar. 2021, Art. no. 143470, doi: 10.1016/j.scitotenv.2020.143470.

[113] M. Johansson and Å. Boholm, “Scientists’ understandings of risk of nanomaterials: Disciplinary culture through the ethnographic lens,” NanoEthics, vol. 11, pp. 229–242, Aug. 2017, doi: 10.1007/s11569-017-0297-2.

[114] E. V. Soares and H. M. V. M. Soares, “Harmful effects of metal(loid) oxide nanoparticles,” Applied Microbiology and Biotechnology, vol. 105, pp. 1379–1394, Feb. 2021, doi: 10.1007/s00253-021-11124-1.
[115] W. T. Wu, L.-A. Li, T.-C. Tsou, S.-L. Wang, H.-L. Lee, T.-S. Shih, and S.-H. Liou, “Longitudinal follow-up of health effects among workers handling engineered nanomaterials: A panel study,” Environmental Health, vol. 18, Dec. 2019, Art. no. 107, doi: 10.1186/s12940- 019-0542-y.

[116] U.S. Department of Energy, “Novel, low-cost nanoparticle production. A modular hybrid plasma reactor and process to manufacture low-cost nanoparticles,” DOE, USA, Tech. Rep. DOE/EE-0544, Jun. 2011.

[117] C. Raab, M. Simko, U. Fiedeler, M. Nentwich, and A. Gazsó, “Production of nanoparticles and nanomaterials,” NanoTrust Dossiers, Feb. 2011, Art. no. 006en.

[118] A. Rane, K. Kanny, V. Abitha, and S. Thomas, “Methods for synthesis of nanoparticles and fabrication of nanocomposites,” in Synthesis of Inorganic Nanomaterials, S. M. Bhagyaraj, O. S. Oluwafemi, N. Kalarikkal, Eds. Sawston, UK: Woodhead Publishing, 2018, pp. 121–139, doi: 10.1016/B978-0-08-101975-7.00005-1.

Full Text: PDF

DOI: 10.14416/j.asep.2022.10.001


  • There are currently no refbacks.