Page Header

Fabrication and Characterization of an Active Nanocomposite Film based on Polystyrene/Thyme/Nano ZnO for Food Packaging

Theivasanthi Thiruganasambantham, Senthil Muthu Kumar Thiagamani, Hariram Natarajan, Suchart Siengchin, Sanjay Mavinkere Rangappa


The main objective of this research is to develop an active antifungal packaging material utilizing polystyrene as the matrix material with active agents. The uniqueness of this study lies in the use of thyme extract as a reducing agent in the green synthesis of zinc oxide nanoparticles. The nanocomposite film was fabricated by impregnating zinc oxide nanoparticles in polystyrene. The nanocomposite films were characterized using XRD, FTIR, SEM and antifungal testing. The crystallite size of the synthesized ZnO NPs was observed to be in the 20–30 nm range. The FTIR spectra revealed the presence of ZnO NPs at the peak of 1000 cm–1. The morphological analysis showed the nanoparticles having a spherical shape. The results indicated that nanocomposite films exhibited excellent resistance against the fungus viz., Pencillum sp, Nigrospora oryzae and Chaetomium oryzae. The development of such active packaging materials with nanoparticles to preserve food grains will pave the way for a new technological path in food packaging applications.


[1] S. M. K. Thiagamani, N. Rajini, and S. Siengchin, “Influence of silver nanoparticles on the mechanical, thermal and antimicrobial properties of cellulose-based hybrid nanocomposites,” Composites Part B: Engineering, vol. 165, pp. 516– 525, May 2019, doi: 10.1016/j.compositesb. 2019.02.00.

[2] M. Sriariyanun, A. Tawai, and Y.-S. Cheng, “Influence of nanoparticles on the shelf life of food in packaging materials,” in Food Packaging, G. O. Young, Ed. Florida: CRC Press, 2020, pp. 255–276.

[3] N. T. Nguyen, M. Nakphaichit, S. Nitisinprasert, and S. Roytrakul, “Purification and characterization of a novel bacteriocin against vanocomycin resistant enterococci produced by enterococcus hirae HM02-04,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 259–270, Mar. 2021, doi: 10.14416/j.asep.2020.04.004.

[4] S. M. Rangappa, J. Parameswaranpillai, S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, Food Packaging: Advanced Materials, Technologies, and Innovations. Florida: CRC Press, 2020.

[5] V. N. Popok, C. M. Jeppesen, P. Fojan, A. Kuzminova, J. Hanuš, and O. Kylián, “Comparative study of antibacterial properties of polystyrene films with TiOx and Cu nanoparticles fabricated using cluster beam technique,” Beilstein Journal of Nanotechnology, vol. 9, pp. 861–869, Mar. 2018, doi: 10.3762/bjnano.9.80.

[6] L. Muthulakshmi, N. Rajini, H. Nellaiah, T. Kathiresan, M. Jawaid, and A. V. Rajulu, “Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract,” International Journal of Biological Macromolecules, vol. 95, pp. 1064–1071, Feb. 2017, doi: 10.1016/j.ijbiomac.2016.09.114.

[7] T. Thiruganasambanthan, R. A. Ilyas, M. Nor, F. Norrrahim, T. S. M. Kumar, S. Siengchin, M. Syukri, M. Misenan, M. Abdillah, A. Farid, N. M. Nurazzi, M. Rizal, and M. Asyraf, S. Z. Zakaria, and M. R Razman, “Emerging developments on nanocelluslose as liquid crystals: A biomimetric approach,” Polymers, vol. 14, Apr. 2022, Art. no. 1546, doi: 10.3390/polym14081546.

[8] T. S. M. Kumar, N. Rajini, H. Tian, A. V. Rajulu, J. T. W. Jappes, and S. Siengchin, “Development and analysis of biodegradable poly(propylene carbonate)/tamarind nut powder composite films,” International Journal of Polymer Analysis and Characterization, vol. 22, pp. 415–423, May 2017, doi: 10.1080/1023666X.2017.1313483.

[9] S. M. K. Thiagamani, R. Nagarajan, M. Jawaid, V. Anumakonda, and S. Siengchin, “Utilization of chemically treated municipal solid waste(spent coffee bean powder) as reinforcement in cellulose matrix for packaging applications,” Waste Management, vol. 69, pp. 445–454, Nov. 2017, doi: 10.1016/j.wasman.2017.07.035.

[10] S. M. K. Thiagamani, S. Krishnasamy, and S. Siengchin, “Challenges of biodegradable polymers: An environmental perspective,” Applied Science and Engineering Progress, vol. 12, no. 3, p. 149, Aug. 2019, doi: 10.14416/ j.asep.2019.03.002.

[11] T. S. M. Kumar, N. Rajini, K. O. Reddy, A. V. Rajulu, S. Siengchin, and N. Ayrilmis, “All cellulose composite films with cellulose matrix and napier grass cellulose fibril fillers,” International Journal of Biological Macromolecules, vol. 112, pp. 1310–1315, Jun. 2018, doi: 10.1016/j.ijbiomac.2018.01.167.

[12] T. S. M. Kumar, N. Rajini, S. Siengchin, A. V. Rajulu, and N. Ayrilmis, “Influence of musa acuminate bio filler on the thermal, mechanical and visco elastic behavior of poly (propylene) carbonate biocomposites,” International Journal of Polymer Analysis and Characterization, vol. 24, pp. 439–446, Jul. 2017, doi: 10.1080/1023666X.2019.1602910.

[13] M. E. Hoque, A. M. Rayhan, and S. I. Shaily, “Natural fiber based green composites: Processing, properties and biomedical applications,” Applied Science and Engineering Progress, vol. 14, pp. 689–718, Oct. 2021, doi: 10.14416/j.asep.2021.09.005.

[14] M. P. Indira Devi, N. Nallamuthu, N. Rajini, T. S. M. Kumar, S. Siengchin, A. V. Rajulu, and N. Ayrilmis, “Biodegradable poly (propylene) carbonate using in-situ generated CuNPs coated Tamarindus indica filler for biomedical applications,” Materials Today Communications, vol. 19, pp. 106–113, doi: 10.1016/j.mtcomm. 2019.01.007.

[15] M. P. I. Devi, N. Nallamuthu, N. Rajini, T. S. M. Kumar, S. Siengchin, A. V. Rajulu, and N. Hariram, “Antimicrobial properties of poly (propylene) carbonate/Ag nanoparticle-modified tamarind seed polysaccharide with composite films,” Ionics, vol. 25, pp. 3461–3471, Jul. 2019, doi: 10.1007/s11581-019-02895-9.

[16] S. T. M. Kumar, K. Yorseng, S. Siengchin, N. Ayrilmis, and V. A. Rajulu, “Mechanical and thermal properties of spent coffee bean filler/ poly (3-hydroxybutyrate-co-3-hydroxyvalerate) biocomposites: Effect of recycling,” Process Safety and Environmental Protection, vol. 124, pp. 187–195, Apr. 2019, doi: 10.1016/j.psep. 2019.02.008.

[17] T. S. M. Kumar, N. Rajini, M. Jawaid, A. V. Rajulu, and J. T. W. Jappes, “Preparation and properties of cellulose/tamarind nut powder green composites: (Green composite using agricultural waste reinforcement),” Journal of Natural Fibers, vol. 15, pp. 11–20, Jan. 2018. doi: 10.1080/ 15440478.2017.1302386.

[18] T. S. M. Kumar, N. Rajini, T. Huafeng, A. V. Rajulu, N. Ayrilmis, and S. Siengchin, “Improved mechanical and thermal properties of spent coffee bean particulate reinforced poly (propylene carbonate) composites,” Particulate Science and Technology, vol. 37, pp. 643–650, Jul. 2019, doi: 10.1080/02726351.2017.1420116.

[19] T. S. M. Kumar, K. Senthilkumar, M. Chandrasekar, N. Rajini, S. Siengchin, and A. V. Rajulu, “Characterization, thermal and dynamic mechanical properties of poly (propylene carbonate) lignocellulosic Cocos nucifera shell particulate biocomposites,” Materials Research Express, vol. 9, Jul. 2019, Art. no. 096426.

[20] T. S. M. Kumar, N. Rajini, M. Jawaid, A. V. Rajulu, and J. T. W. Jappes, “Preparation and properties of cellulose/tamarind nut powder green composites: (Green composite using agricultural waste reinforcement),” Journal of Natural Fibers, vol. 15, pp. 11–20, Apr. 2017, doi: 10.1080/15440478.2017.1302386.

[21] T. S. M. Kumar, M. Chandrasekar, K. Senthilkumar, R. A. Ilyas, S. M. Sapuan, N. Hariram, A. V. Rajulu, N. Rajini, and S. Siengchin, “Characterization, thermal and antimicrobial properties of hybrid cellulose nanocomposite films with in-situ generated copper nanoparticles in Tamarindus indica Nut Powder,” Journal of Polymers and the Environment, vol. 29, pp. 1134–1142, Apr. 2021, doi: 10.1007/s10924-020-01939-w.

[22] T. S. M. Kumar, K. Senthilkumar, M. Ratanit, N. Rajini, N. Chanunpanich, N. Hariram, P. Pornwongthong, and S. Siengchin, “Influence of titanium dioxide particles on the filtration of 1, 4-dioxane and antibacterial properties of electrospun cellulose acetate and polyvinylidene fluoride nanofibrous membranes,” Journal of Polymers and the Environment, vol. 29, pp. 775–784, Mar. 2021, doi: 10.1007/s10924- 020-01919-0.

[23] K. D. Hari, C. V Garcia, G.-H. Shin, and J.-T. Kim, “Improvement of the UV barrier and antibacterial properties of crosslinked pectin/ zinc oxide bionanocomposite films,” Polymers, vol. 13, Jul. 2021, Art. no. 2403, doi: 10.3390/ polym13152403.

[24] A. Tajdari, A. Babaei, A. Goudarzi, R. Partovi, and A. Rostami, “Hybridization as an efficient strategy for enhancing the performance of polymer nanocomposites,” Polymer Composites, vol. 42, pp. 6801–6815, Dec. 2021, doi: 10.1002/ pc.26341.

[25] A. Babaei, M. Haji Abdolrasouli, and A. Rostami, “Polylactic acid/polycaprolactone bionanocomposites containing zinc oxide nanoparticles: Structure, characterization and cytotoxicity assay,” Journal of Thermoplastic Composite Materials, Aug. 2022, Art. no. 0892705 7221118823, doi: 10.1177/08927057221118823.

[26] B. Ashok, M. Umamahesh, N. Hariram, S. Siengchin, and A. V. Rajulu, “Modification of waste leather trimming with in situ generated silver nanoparticles by one step method,” Applied Science and Engineering Progress, vol. 14, no. 2, pp. 236–246, Mar. 2021, doi: 10.14416/j.asep.2021.01.007.

[27] Q. A. Kadhim, R. M. Alwan, R. A. Ali, and A. N. Jassim, “Synthesis of zinc oxide/polystyrene nanocoposite films and study of antibacterial activity against Escherichia coli and Staphylococcus aures,” Nanoscience Nanotechnology, vol. 6, pp. 1–5, 2016, doi: 10.5923/j.nn.20160601.01.

[28] J. Liu, J. Hu, M. Liu, G. Cao, J. Gao, and Y. Luo, “Migration and characterization of nanozinc oxide from polypropylene food containers,” American Journal of Food Technology, vol. 11, pp. 159–164, 2016, doi: 10.3923/ajft.2016.159.164.

[29] J. Suresh, G. Pradheesh, V. Alexramani, M. Sundrarajan, and S. I. Hong, “Green synthesis and characterization of zinc oxide nanoparticle using insulin plant (Costus pictus D. Don) and investigation of its antimicrobial as well as anticancer activities,” Advances in Natural Sciences: Nanoscience and Nanotechnology, vol. 9, Feb. 2018, Art. no. 15008.

[30] P. Jamdagni, P. Khatri, and J. S. Rana, J. “Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity,” Journal of King Saud University-Science, vol. 30, pp. 168–175, Apr. 2018, doi: 10.1016/j.jksus.2016.10.002.

[31] P. A. Arciniegas-Grijalba, M. C. Patiño-Portela, L. P. Mosquera-Sánchez, J. A. Guerrero-Vargas, and J. E. Rodríguez-Páez, “ZnO nanoparticles (ZnO-NPs) and their antifungal activity against coffee fungus Erythricium salmonicolor,” Applied Nanoscience, vol. 7, pp. 225–241, Jun. 2017.
[32] N. O. Jasim, “Antifungal activity of Zinc oxide nanoparticles on Aspergillus fumigatus fungus & Candida albicans yeast,” Citeseer, vol. 5, pp. 23–28, 2015.

[33] L. He, Y. Liu, A. Mustapha, and M. Lin, “Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum,” Microbiological Research, vol. 166, pp. 207–215, Mar. 2011, doi: 10.1016/j.micres.2010.03.003.

[34] A. Lipovsky, Y. Nitzan, A. Gedanken, and R. Lubart, “Antifungal activity of ZnO nanoparticles—the role of ROS mediated cell injury,” Nanotechnology, vol. 22, Feb. 2011, Art. no. 105101.

[35] L. Esteban-Tejeda, C. Prado, B. Cabal, J. Sanz, R. Torrecillas, and J. S. Moya, “Antibacterial and antifungal activity of ZnO containing glasses,” PLoS One, vol. 10, Art. no. e0132709, Jul. 2015, doi: 10.1371/journal.pone.0132709.

[36] T. M. P. Ngo, T. M. Q. Dang, T. X. Tran, and P. Rachtanapun, “Effects of zinc oxide nanoparticles on the properties of pectin/alginate edible films,” International Journal of Polymer Science, Oct. 2018, doi: 10.1155/2018/5645797.

[37] S. Javidi, A. M. Nafchi, and H. H. Moghadam, “Synergistic effect of nano-ZnO and Mentha piperita essential oil on the moisture sorption isotherm, antibacterial activity, physicochemical, mechanical, and barrier properties of gelatin film,” Journal of Food Measurement and Characterization, vol. 16, pp. 964–974, Apr. 2022, doi: 10.1007/s11694-021-01217-w.

[38] S. Noorian, A. M. Nafchi, M. Bolandi, and M. Jokar, “Effects of nano‐titanium dioxide and mentha piperita essential oil on physicochemical, mechanical, and optical properties of cassava starch film,” Starch‐Stärke, vol. 74, no. 9–10, 2022, Art. no. 2200090, doi: 10.1002/star.202200090.

[39] H. Babapour, H. Jalali, and A. M. Nafchi, “The synergistic effects of zinc oxide nanoparticles and fennel essential oil on physicochemical, mechanical, and antibacterial properties of potato starch films,” Food Science and Nutrition, vol. 9, pp. 3893–3905, Jul. 2021, doi: 10.1002/fsn3.2371.

[40] Z. Shabahang, L. Nouri, and A. M. Nafchi, “Composite film based on whey protein isolate/ pectin/CuO nanoparticles/betanin pigments; Investigation of physicochemical properties,” Journal of Polymers and the Environment, pp. 1–14, Jun. 2022, doi: 10.1007/s10924-022- 02481-7.

[41] M. A. Park, Y. Chang, I. Choi, J. Bai, N. Ja‐hyun, and J. Han, “Development of a comprehensive biological hazard‐proof packaging film with insect‐repellent, antibacterial, and antifungal activities,” Journal of Food Science, vol. 83, pp. 3035–3043, Dec. 2018, doi: 10.1111/1750- 3841.14397.

[42] S. Farsaraei, M. Moghaddam, and L. Mehdizadeh, “Chemical composition and antifungal activity of thyme (Thymus vulgaris) essential oil,” in First Iranian Pharmacognosy Congress, 2017, p. 43.

[43] S. Kumari, R. V Kumaraswamy, R. C. Choudhary, S. S. Sharma, A. Pal, R. Raliya, P. Biswas, and V. Saharan, “Mitochondrial biogenesis and metabolic hyperactivation limits the application of MTT assay in the estimation of radiation induced growth inhibition,” Scientific Reports, vol. 8, pp. 1–15, Jan. 2018, doi: 10.1038/s41598- 018-19930-w.

[44] M. A. D. Nobile, A. Conte, A. L. Incoronato, and O. Panza, “Antimicrobial efficacy and release kinetics of thymol from zein films,” Journal of Food Engineering, vol. 89, pp. 57–63, Nov. 2008, doi: 10.1016/j.jfoodeng.2008.04.004.

[45] A. Brandelli, L. F. W. Brum, and J. H. Z. dos Santos, “Nanostructured bioactive compounds for ecological food packaging,” Environmental Chemistry Letters, vol. 15, pp. 193–204, Jun 2017.

[46] P. Sutradhar and M. Saha, “Green synthesis of zinc oxide nanoparticles using tomato (Lycopersicon esculentum) extract and its photovoltaic application,” Journal of Experimental Nanoscience, vol. 11, pp. 314–327, Mar. 2016, doi: 10.1080/17458080.2015.1059504.

[47] L. A. Al Juhaiman, D. A. Al-Enezi, and W. K. Mekhamer, “Preparation and characterization of polystyrene/organoclay nanocomposites from raw clay,” Digest Journal of Nanomaterials and Biostructures, vol. 11, pp. 105–114, Jan. 2016.

[48] J. T. Adeleke, T. Theivasanthi, M. Thiruppathi, M. Swaminathan, T. Akomolafe, and A. B. Alabi, “Photocatalytic degradation of methylene blue by ZnO/NiFe2O4 nanoparticles,” Applied Surface Science, vol. 455, pp. 195–200, Oct. 2018, doi: 10.1016/j.apsusc.2018.05.184.

[49] K. Suresh, R. V. Kumar, and G. Pugazhenthi, “Processing and characterization of polystyrene nanocomposites based on CoAl layered double hydroxide,” Journal of Science: Advanced Materials and Devices, vol. 1, pp. 351–361, Sep. 2016, doi: 10.1016/j.jsamd.2016.07.007.
[50] S. Ibrahim, M. E. El-Naggar, A. M. Youssef, and M. S. Abdel-Aziz, “Functionalization of polystyrene nanocomposite with excellent antimicrobial efficiency for food packaging application,” Journal of Cluster Science, vol. 31, pp. 1371–1382, Nov. 2020, doi: 10.1007/s10876-019-01748-9.

[51] M. Mahboubi, R. Heidarytabar, E. Mahdizadeh, and H. Hosseini, “Antimicrobial activity and chemical composition of Thymus species and Zataria multiflora essential oils,” Agriculture and Natural Resources, vol. 51, pp. 395–401, Oct. 2017, doi: 10.1016/j.anres.2018.02.001.

[52] H. Almasi, M. J. Oskouie, and A. Saleh, “A review on techniques utilized for design of controlled release food active packaging,” Critical Reviews in Food Science and Nutrition, vol. 61, pp. 2601–2621, Aug. 2020, doi: 10.1080/10408398.2020.1783199.

[53] K. Kamonkhantikul, M. Arksornnukit, and H. Takahashi, “Antifungal, optical, and mechanical properties of polymethylmethacrylate material incorporated with silanized zinc oxide nanoparticles,” International Journal of Nanomedicine, vol. 12, 2017, Art. no. 2353, doi: 10.2147/IJN.S132116.

[54] S. Alfei, B. Marengo, and G. Zuccari, “Nanotechnology application in food packaging: A plethora of opportunities versus pending risks assessment and public concerns,” Food Research International, vol. 137, Nov. 2020, Art. no. 109664, doi: 10.1016/j.foodres.2020.109664.
[55] N. N. Van Long, C. Joly, and P. Dantigny, “Active packaging with antifungal activities,” International Journal of Food Microbiology, vol. 220, pp. 73–90, Mar. 2016, doi: 10.1016/ j.ijfoodmicro.2016.01.001.

[56] A. Khezerlou and S. M. Jafari, “Nanoencapsulated bioactive components for active food packaging,” in Handbook of Food Nanotechnology. Massachusetts: Academic Press, Jan 2020, pp. 493–532, 815866-1.00013-3.

[57] A. Kumar, A. Kamal, S. Singh, R. C. Padalia, S. Tandon, A. Chauhan, D. Saikia, and R. S. Verma, “Chemical composition, antimicrobial activity, kinetics and mechanism of action of Himalayanthyme (Thymus linearis Benth.),” Journal of Essential Oil Research, vol. 32, pp. 59–68, Jan. 2020, doi: 10.1080/10412905.2019.1662337.

[58] A. Valdés, A. C. Mellinas, M. Ramos, N. Burgos, A. Jiménez, and M. del C. Garrigós, “Use of herbs, spices and their bioactive compounds in active food packaging,” RSC Advances, vol. 5, pp. 40324–40335, 2015, doi: 10.1039/ C4RA17286H.

Full Text: PDF

DOI: 10.14416/j.asep.2022.11.003


  • There are currently no refbacks.