Page Header

Developing and Implementing a Quantum Algorithm for the Sliding Mode Controller Using Multiple Qubit Operators: Application to DC Motor Speed Drive

Nadjet Zioui, Aicha Mahmoudi, Mohamed Tadjine


With the advent of quantum computing, almost all classical computing concepts must be translated into quantum equivalents. Control theory, in particular, requires a large numbers of calculations. This paper designs and presents a quantum sliding mode controller. The controller uses two qubit states, one for detecting tracking errors and the other for determining the signs of the errors. The control signal to be applied to the system is stored in the third qubit state. This new controller is implemented on a DC motor to control the angular velocity using electrical current as an input signal. In terms of tracking error energy performance, the results show that the quantum sliding mode controller is just as efficient as the classical sliding mode controller. However, the quantum controller outperforms its predecessor by using 76% to 79% less control energy, allowing for smaller actuators. This represents a significant advancement in control theory in the era of quantum computers. Indeed, actuator control energy is the main drawback of the classical sliding mode control and reducing this energy is one of the main challenges for the control community.


[1] M. E. A. Boudjoghra, S. A. F. Daimellah, N. Zioui, Y. Mahmoudi, and M. Tadjine, “State-domain equations and their quantum computing solution based HHL algorithm,” Mathematical Modelling of Engineering Problems, vol. 9, pp. 879–886, Aug. 2022, doi: 10.18280/mmep.090404.


[2] N. Zioui, A. Mahmoudi, and M. Tadjine, “Design of a new hybrid linearizing-backstepping controller using quantum state equations and quantum spins,” International Journal of Automation and Control, vol. 17, pp. 397–417, Apr. 2023, doi: 10.1504/IJAAC.2023.10051373.


[3] U. Maheswararao Ch, Y. S. Kishore Babu, and K. Amaresh, “Sliding mode speed control of a DC motor,” in 2011 International Conference on Communication Systems and Network Technologies, pp. 387–391 Jun. 2011, doi: 10.1109/CSNT.2011.86.


[4] P. Ghalimath and S. S. Sankeswari, “Speed control of DC motor using sliding mode control approach,” IOSR Journal of Electrical and Electronics Engineering, vol. 10, pp. 17–22, Jul. 2015, doi: 10.9790/1676-10411722.


[5] E. H. Dursun and A. Durdu, “Speed control of a DC motor with variable load using sliding mode control,” International Journal of Computer and Electrical Engineering, vol. 8, pp. 219–226, Jun. 2016, doi: 10.17706/ijcee.2016.8.3.219-226.


[6] S. Vaez-Zadeh and M. Zamanian, “Permanent magnet DC motor sliding mode control system,” IJE Transactions A: Basics, vol. 16, pp. 367–376, Nov. 2003.


[7] B. Ramprasad and K. Venkataratnam, “A novel speed control of DC motor using sliding mode technique,” International Journal of Current Engineering and Scientific Research, vol. 6, pp. 40–46, 2019.


[8] N. Bharathi, A. Kavitha, and B. Barathy, “Sliding mode control for speed control of brushless DC motor,” International Journal of Scientific and Engineering Research, vol. 5, pp. 22–27, Apr. 2014.


[9] F. D. Chizea, E. Ovie, C. M. Akachukwu, and M. B. Muazu, “Sliding mode control of a miniature brushless DC motor,” International Journal of Engineering and Technical Research, vol. 9, pp. 24–27, Aug. 2019.


[10] H. Guldemir, “Sliding mode speed control for DC drive systems,” Mathematical and Computational Applications, vol. 8, pp. 377–384, 2003.


[11] B. R. Jo, H. W. Ahn, and M. J. Youn, “Multi-variable sliding mode control of quantum boost SRC,” IEEE Transactions on Control Systems Technology, vol. 2, pp. 148–150, Jun. 1994, doi: 10.1109/87.294339.


[12] M. Castilla, L. G. de Vicuña, M. López, O. López, and J. Matas, “On the design of sliding mode control schemes for quantum resonant converters,” IEEE Transactions on Power Electronics, vol. 15, pp. 960–973, Nov. 2000, doi: 10.1109/63.892701.


[13] M. Castilla, L. G. de Vicuña, J. M. Guerrero, J. Matas, and J. Miret, “Sliding-mode control of quantum series-parallel resonant converters via input–output linearization,” IEEE Transactions on Industrial Electronics, vol. 52, pp. 566–575, Apr. 2005, doi: 10.1109/TIE.2005.844256.


[14] M. Castilla, L. G. de Vicuña, J. Matas, J. Miret, and J. C. Vasquez, “A comparative study of sliding-mode control schemes for quantum series resonant inverters,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 3487–3495, Sep. 2009, doi: 10.1109/TIE.2009.2022517.


[15] L. G. de Vicuña, M. Castilla, J. Miret, J. Matas, and J. M. Guerrero, “Sliding-mode control for a single-phase AC/AC quantum resonant converter,” IEEE Transactions on Industrial Electronics, vol. 56, pp. 3496–3504, Sep. 2009, doi: 10.1109/ TIE.2009.2026766.


[16] D. Dong and I. R. Petersen, “Sliding mode control of quantum systems,” New Journal of Physics, vol. 11, pp. 105033–105050, Oct. 2009, doi: 10.1088/1367-2630/11/10/105033.


[17] D. Dong and I. R. Petersen, “Sliding mode control of two-level quantum systems,” Automatica, vol. 48, pp. 725–735, Mar. 2012, doi: 10.1016/j. automatica.2012.02.003.


[18] D. Dong and I. R. Petersen, “Sliding mode control of quantum systems,” in Learning and Robust Control in Quantum Technology (Communications and Control Engineering). Cham: Springer, 2023, doi: 10.1007/978-3-031-20245-2_6.


[19] M. M. Zirkohi, “Fast terminal sliding mode control design for position control of induction motors using adaptive quantum neural networks,” Applied Soft Computing, vol. 115, pp. 108268– 108282, Dec. 2021, doi: 10.1016/j.asoc.2021. 108268.


[20] Z. Tavanaei-Sereshki and M. R. Ramezani-al, “Quantum genetic sliding mode controller design for depth control of an underwater vehicle,” Measurement and Control, vol. 51, pp. 336–348, Jun. 2018, doi: 10.1177/0020294018789199.


[21] J. J. Moghaddam and A. Bagheri, “Suppressing vibration in a multilayers composite material plate using quantum-behaved particle swarm optimization and sliding mode control system,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, vol. 229, pp. 2095–2105, Nov. 2014, doi: 10.1177/0954410014565678.


[22] F. Chen, R. Jiang, C. Wen, and R. Su, “Self-repairing control of a helicopter with input time delay via adaptive global sliding mode control and quantum logic,” Information Sciences, vol. 316, pp. 123–131, Apr. 2015, doi: 10.1016/j.ins. 2015.04.023.


[23] S. Chegini and M. Yarahmadi, “Quantum sliding mode control via error sliding surface,” Journal of Vibration and Control, vol. 24, pp. 5345– 5352, Dec. 2017, doi: 10.1177/1077546317752848.


[24] R. B. Griffiths, Consistent Quantum Theory. Cambridge: Cambridge University Press, pp. 95–100, 2002.


[25] D. McMahon, Quantum Computing Explained. Hoboken, New Jersey: Wiley, pp. 11–37, 2007.


[26] J. Abhijith, A. Adedoyin, J. Ambrosiano, P. Anisimov, W. Casper, G. Chennupati, C. Coffrin, H. Djidjev, D. Gunter, S. Karra, N. Lemons, S. Lin, A. Malyzhenkov, D. Mascarenas, S. Mniszewski, B. Nadiga, D. O'Malley, D. Oyen, S. Pakin, L. Prasad, R. Roberts, P. Romero, N. Santhi, N. Sinitsyn, P. J. Swart, J. G. Wendelberger, B. Yoon, R. Zamora, W. Zhu, S. Eidenbenz, A. Bärtschi, P. J. Coles, M. Vuffray, and A. Y. Lokhov, “Quantum algorithm implementations for beginners,” ACM Transactions on Quantum Computing, vol. 24, pp. 1–92, Jul. 2022, doi: 10.1145/3517340.


[27] N. Zioui, A. Mahmoudi, Y. Mahmoudi, and M. Tadjine, “Quantum computing based state domain equations and feedback control,” Results in Applied Mathematics, vol. 19, pp. 100385–100393, Aug. 2023, doi: 10.1016/j.rinam.2023.100385.


[28] IBM, “IBM quantum composer,” 2023. [Online]. Available: composer/files/new

Full Text: PDF

DOI: 10.14416/j.asep.2023.09.005


  • There are currently no refbacks.