Page Header

Diversity of Anammox Bacteria from Landfill Treatment Plant Sludge in Tropical Area

Zulkarnaini Zulkarnaini, Nadiah Atsil, Hillary Citra Aribah, Puti Sri Komala, Shinta Silvia, Norihisa Matsuura


The anaerobic ammonium oxidation (anammox) process is known as the warm process. Tropical areas have an advantage due to their consistent temperature throughout the year. This study analyzed the diversity of anammox bacteria in the tropical area using leachate sludge from a landfill as an inoculum in a filter bioreactor (FtBR) and observed nitrogen removal performance. Ammonium and nitrite concentrations of 70, 150, and 200 mg-N/L were delivered into the reactor continuously with hydraulic retention time (HRT) of 24 h and 12 h and run for 131 days at ambient tropical temperature (25–28 °C). High performance achieved with nitrogen removal rate (NRR), nitrogen removal efficiency (NRE), and ammonium conversion efficiency (ACE) were 0.866 kg-N/m3.d, 99.19%, and 98.90%, respectively. The cultivated leachate sludge could perform an anammox process with four anammox species, Candidatus Brocadia fulgida, Candidatus Brocadia sapporoensis, Candidatus Brocadia sp uncultured, Candidatus Jettenia sp with abundance 6.52%, 13.82%, 0.77%, and 0.69%, respectively. These findings contribute to the advancement of biotechnology in wastewater treatment, particularly in tropical countries, and highlight the potential for highly cost-effective technology.


[1] A. Gupta, R. Gupta, and R. L. Singh, “Microbes and environment,” in Principles and Applications of Environmental Biotechnology for a Sustainable Future, Singapore: Springer, pp. 43–84, 2017, doi: 10.1007/978-981-10-1866-4_3.


[2] L. E. Lehtovirta-Morley, “Ammonia oxidation: Ecology, physiology, biochemistry and why they must all come together,” FEMS Microbiology Letters, vol. 365, no. 9, May 2018, doi: 10.1093/ fny058.


[3] P. Wu, J. Chen, V. K. Garlapati, X. Zhang, F. W. V. Jenario, X. Li, W. Liu, C. Chen, T. M. Aminabhavi, and X. Zhang, “Novel insights into Anammox-based processes: A critical review,” Chemical Engineering Journal, vol. 444, Sep. 2022, Art. no. 136534, doi: 10.1016/J.CEJ.2022.136534.


[4] G. Wu, T. Zhang, M. Gu, Z. Chen, and Q. Yin, “Review of characteristics of anammox bacteria and strategies for anammox start-up for sustainable wastewater resource management,” Water Science and Technology, vol. 82, no. 9, pp. 1742–1757, Nov. 2020, doi: 10.2166/wst.2020.443.


[5] D. R. Shaw, M. Ali, K. P. Katuri, J. A. Gralnick, J. Reimann, R. Mesman, L. van Niftrik, M. S. M. Jetten, and P. E. Saikaly, “Extracellular electron transfer-dependent anaerobic oxidation of ammonium by anammox bacteria,” Nature Communication, vol. 11, no. 1, Dec. 2020, doi: 10.1038/s41467-020-16016-y.


[6] P. Sonthiphand, M. W. Hall, and J. D. Neufeld, “Biogeography of anaerobic ammonia-oxidizing (anammox) bacteria,” Frontiers in Microbiology, vol. 5, Aug. 2014, doi: 10.3389/fmicb.2014.00399.


[7] T. Abbas, Q. Zhang, X. Zou, M. Tahir, D. Wu, S. Jin, and H. Di, “Soil anammox and denitrification processes connected with N cycling genes co-supporting or contrasting under different water conditions,” Environment International, vol. 140, Jul. 2020, Art. no. 105757, doi: 10.1016/j.envint.2020.105757.


[8] I. S. Marlis, P. S. Komala, and Z. Zulkarnaini, “Penyisihan nitrogen melalui proses anammox dengan inokulum lumpur instalasi pengolahan air limbah pabrik pupuk,” Jurnal Ilmu Lingkungan, vol. 21, no. 3, pp. 717–724, Jul. 2023, doi: 10.14710/jil.21.3.717-724.


[9] F. Lulrahman, S. Silvia, and Z. Zulkarnaini, “Nitrogen removal by anammox process using sludge from Muara Penjalinan of Padang city as inoculum,” Jurnal Teknologi Lingkungan, vol. 23, no. 2, pp. 143–150, Jul. 2022, doi: 10.29122/jtl. v23i2.5284.


[10] R. P. Putra, P. S. Komala, Z. Zulkarnaini, and P. S. Komala, “Start-up anammox process using sludge from koto baru lake as inoculum,” Jurnal Teknologi Lingkungan, vol. 21, no. 2, pp. 138–146, Jul. 2020, doi: 10.29122/jtl. v21i2.4155.


[11] G. Gumelar, E. Zainuddin, and Z. Zulkarnaini, “Anaerobic ammonium oxidation performance in shrimp pond wastewater treatment,” Andalasian International Journal of Applied Science, Engineering and Technology, vol. 02, no. 02, pp. 51–56, Jul. 2022, doi: 10.25077/aijaset. v2i1.41.


[12] I. N. Ismail, M. Taufik, N. A. Umor, M. R. Norulhuda, Z. Zulkarnaini, and S. Ismail, “Anammox process for aquaculture wastewater treatment: Operational condition, mechanism, and future prospective,” Water Science and Technology, vol. 86, no. 12, pp. 3093–3112, Dec. 2022, doi: 10.2166/wst.2022.403.


[13] B. Kartal, J. Rattray, L. A. Van Niftrik, J. Van de Vossenberg, M. C. Schmid, R. I. Webb, S. Schouten, J. A. Fuerst, J. S. Damsté, M. S. M. Jetten, and M. Strous “Candidatus ‘Anammoxoglobus propionicus’ a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria,” Systematic and Applied Microbiology, vol. 30, no. 1, pp. 39–49, Jan. 2007, doi: 10.1016/j. syapm.2006.03.004.


[14] J. Böllmann, S. Engelbrecht, and M. Martienssen, “Autofluorescent characteristics of Candidatus Brocadia fulgida and the consequences for FISH and microscopic detection,” Systematic and Applied Microbiology, vol. 42, no. 2, pp. 135–144, Mar. 2019, doi: 10.1016/j.syapm.2018.09.002.


[15] L. K. Akula, R. K. Oruganti, D. Bhattacharyya, and K. K. Kurilla, “Treatment of marigold flower processing wastewater using a sequential biological-electrochemical process,” Applied Science and Engineering Progress, vol. 14, no. 3, pp. 525–542, Jul. 2021, doi: 10.14416/j. asep.2021.04.001.


[16] S. Yadav and S. Kamsonlian, “Progress on the development of techniques to remove contaminants from wastewater: A review,” Applied Science and Engineering Progress, vol. 16, no. 3, Feb. 2023, Art. no. 6729, doi: 10.14416/j.asep.2023.02.001.


[17] Z. Zulkarnaini, P. S. Komala, and A. Almi, “Anammox biofilm process using sugarcane bagasse as an organic carrier,” Indonesian Journal of Biotechnology, vol. 26, no. 1, p. 25, Mar. 2021, doi: 10.22146/ijbiotech.58554.


[18] Z. Zulkarnaini and S. Silvia, “Performance of nitrogen removal in ceramic anammox reactor with two-inflow,” in IOP Conference Series: Materials Science and Engineering, Jan. 2021, Art. no. 012037, doi: 10.1088/1757- 899X/1041/1/012037.


[19] Z. Zulkarnaini, A. Nur, and W. Ermaliza, “Nitrogen removal in the anammox biofilm reactor using palm fiber as carrier in tropical temperature operation,” Jurnal Riset Teknologi Pencegahan Pencemaran Industri, vol. 10, no. 2, pp. 7–15, Dec. 2019, doi: 10.21771/jrtppi.2019. v10.no2.


[20] Z. Zulkarnaini, A. A. Rasyidah, and Ridwan, “Utilization of waste plastic straws as carrier in the anammox process,” Jurnal Teknologi Lingkungan, vol. 24, no. 1, pp. 73–80, Jan. 2023, doi: 10.55981/jtl.2023.239


[21] K. Isaka, T. Sumino, and S. Tsuneda, “High nitrogen removal performance at moderately low temperature utilizing anaerobic ammonium oxidation reactions,” Journal of Bioscience and Bioengineering, vol. 103, no. 5, pp. 486–490, May 2007, doi: 10.1263/jbb.103.486.


[22] Z. Zulkarnaini, Q. Yujie, R. Yamamoto-Ikemoto, and N. Matsuura, “One-stage nitritation/anammox process using a biofilm reactor with two-inflow,” Journal of Water and Environment Technology, vol. 16, no. 2, pp. 106–114, Aug. 2018, doi: 10.2965/jwet.17-050.


[23] M. Kumar, A. Daverey, J. D. Gu, and J. G. Lin, “Anammox processes,” Current Developments in Biotechnology and Bioengineering, pp. 381–407, 2017, doi: 10.1016/B978-0-444-63665-2.00015-1.


[24] Z. Zulkarnaini, B. Primasari, and D. J. Saputra, “Performance of anammox biofilm reactor under tropical temperature,” in IOP Conference Series: Materials Science and Engineering, vol. 1041, no. 1, 2021, Art. no. 012035, doi: 10.1088/1757- 899x/1041/1/012035.


[25] K. Koike, G. J. Smith, R. Yamamoto-Ikemoto, S. Lücker, and N. Matsuura, “Distinct comammox Nitrospira catalyze ammonia oxidation in a full-scale groundwater treatment bioreactor under copper limited conditions,” Water Research, vol. 210, Feb. 2022, doi: 10.1016/j.watres. 2021.117986.


[26] J. G. Caporaso, C. L. Lauber, W. A. Walters, D. Berg-Lyons, J. Huntley, N. Fierer, S. M. Owens, J. Betley, L. Fraser, M. Bauer, N. Gormley, J. A. Gilbert, G. Smith, and R. Knight, “Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms,” ISME Journal, vol. 6, no. 8, pp. 1621–1624, Aug. 2012, doi: 10.1038/ismej.2012.8.


[27] D. P. Herlemann, M. Labrenz, K. Jürgens, S. Bertilsson, J. J. Waniek, and A. F. Andersson, “Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea,” ISME Journal, vol. 5, no. 10, pp. 1571–1579, Oct. 2011, doi: 10.1038/ismej.2011.41.


[28] S. Cho, C. Kambey, and V. K. Nguyen, “Performance of anammox processes for wastewater treatment: A critical review on effects of operational conditions and environmental stresses,” Water, vol. 12, no. 1. MDPI AG, Jan. 2020. doi: 10.3390/ w12010020.


[29] S. Cho, C. Kambey, and V. Nguyen, “Performance of anammox processes for wastewater treatment: A critical review on effects of operational conditions and environmental stresses,” Water, vol. 12, no. 1, p. 20, Dec. 2019, doi: 10.3390/ w12010020.


[30] T. Lotti, R. Kleerebezem, and M. C. M. van Loosdrecht, “Effect of temperature change on anammox activity,” Biotechnology and Bioengineering, vol. 112, no. 1, pp. 98–103, Jan. 2015, doi: 10.1002/bit.25333.


[31] T. Lotti, R. Kleerebezem, C. Lubello, and M. C. M. van Loosdrecht, “Physiological and kinetic characterization of a suspended cell anammox culture,” Water Research, vol. 60, pp. 1–14, Sep. 2014, doi: 10.1016/j.watres.2014.04.017.


[32] E. Isanta, T. Bezerra, I. Fernández, M. E. Suárez- Ojeda, J. Pérez, and J. Carrera, “Microbial community shifts on an anammox reactor after a temperature shock using 454-pyrosequencing analysis,” Bioresource Technology, vol. 181, pp. 207–213, Apr. 2015, doi: 10.1016/j.biortech. 2015.01.064.


[33] G. Park, N. Teshima, Y. Nakayama, M. Takekawa, S. Soda, M. Ike, K.Isaka, and K. Furukawa, “Startup of lab-scale anammox reactors seeded with activated sludge at ambient temperature,” Japanese Journal of Water Treatment Biology, vol. 52, no. 3, pp. 73–83, 2016, doi: 10.2521/jswtb.52.73.


[34] S. Begmatov, A. G. Dorofeev, V. V. Kadnikov, A. V. Beletsky, N. V. Pimenov, N. V. Ravin, and A. V. Mardanov, “The structure of microbial communities of activated sludge of large-scale wastewater treatment plants in the city of Moscow,” Scientific Reports, vol. 12, no. 1, Art. no. 3458, Mar. 2022, doi: 10.1038/s41598- 022-07132-4.


[35] L. Hu, X. Cheng, G. Qi, M. Zheng, Y. Dang, J. Li, and K. Xu, “Achieving ammonium removal through anammox-derived feammox with low demand of Fe(III),” Frontiers in Microbiology, vol. 13, Jun. 2022, doi: 10.3389/fmicb.2022.918634.


[36] S.-C. Hsu, Y.-C. Lai, P.-H. Hsieh, P.-J. Cheng, S.-S. Wong, and C.-H. Hung, “Successful enrichment of rarely found candidatus anammoxoglobus propionicus from leachate sludge,” Journal of Microbiology and Biotechnology, vol. 24, no. 7, pp. 879–887, Jul. 2014, doi: 10.4014/ jmb.1401.01016.


[37] Y. Yang, M. Li, Z. Hu, H. Shim, J. Lin, X. Li, and J. Gu, “Deep insights into the green nitrogen removal by anammox in four full-scale WWTPs treating landfill leachate based on 16S rRNA gene and transcripts by 16S rRNA high-throughput sequencing,” Journal of Cleaner Production, vol. 276, Dec. 2020, Art. no. 124176, doi: 10.1016/j.jclepro.2020.124176.

Full Text: PDF

DOI: 10.14416/j.asep.2024.01.003


  • There are currently no refbacks.