Page Header

Recent Updates on Jellyfish: Applications in Agro-based Biotechnology and Pharmaceutical Interests

Noora Barzkar, Benjawan Thumthanaruk, Muhammad Saleem Kalhoro, Vilai Rungsardthong, Theerawut Phusantisampan


Jellyfish are gelatinous sea creatures that belong to the subphylum Medusozoa of the phylum Cnidaria and are found on many beaches worldwide. Despite being considered a nuisance, jellyfish have many uses, such as being a source of high-value molecules such as collagen, gelatin, and protein hydrolysates and a source of high-protein food. Studies related to its availability, post-harvest applications, and need-based use in biomedicine are thrust research of analysis or investigation. Therefore, this review has been designed with all the latest information with a focus on applications of jellyfish in agro-based biotechnology and pharmaceutics. The review has been systematically arranged to present on the broader search platform for future research studies and possible need-based applications.


[1] M. T. Pedersen, J. R. Brewer, L. Duelund, and P. L. Hansen, “On the gastr ophysics of jellyfish preparation,” International Journal of Gastronomy and Food Science, vol. 9, pp. 34–38, Oct. 2017, doi: 10.1016/j.ijgfs.2017.04.001.


[2] I. M. Duarte, S. C. Marques, S. M. Leandro, and R. Calado, “An overview of jellyfish aquaculture: For food, feed, pharma and fun,” Reviews in Aquaculture, vol. 14, pp. 265–287, Jul. 2021, doi: 10.1111/raq.12597.


[3] I. Emadodin, T. Reinsch, A. Rotter, M. Orlando- Bonaca, F. Taube, and J. Javidpour, “A perspective on the potential of using marine organic fertilizers for the sustainable management of coastal ecosystem services,” Environmental Sustainability, vol. 3, pp. 105–115, Feb. 2020, doi: 10.1007/s42398- 020-00097-y.


[4] A. Lueyot, V. Rungsardthong, S. Vatanyoopaisarn, P. Hutangura, B. Wonganu, P. Wongsa-Ngasri, S. Charoenlappanit, S. Roytrakul, and B. Thumthanaruk, “Influence of collagen and some proteins on gel properties of jellyfish gelatin,” PLOS One, vol. 16, p. e0253254, Jun. 2021, doi: 10.1371/journal.pone.0253254.


[5] P. Muangrod, V. Rungsardthong, S. Vatanyoopaisarn, Y. Tamaki, E. Kuraya, and B. Thumthanaruk, “Effect of wash cycle on physical and chemical properties of rehydrated jellyfish by-products and jellyfish protein powder,” Science, Engineering Health Studies, p. 21030004, Mar. 2021, doi: 10.14456/sehs.2021.14.


[6] A. Raposo, I. Alasqah, H. A. Alfheeaid, Z. D. Alsharari, H. A. Alturki, and D. Raheem, “Jellyfish as food: A narrative review,” Foods, vol. 11, p. 2773, Jul. 2022, doi: 10.3390/foods11182773.


[7] D. W. Kim, T. S. Baek, Y. J. Kim, S. K. Choi, and D. W. Lee, “Moisturizing effect of jellyfish collagen extract,” Journal of the Society of Cosmetic Scientists of Korea, vol. 42, pp. 153–162, Jun. 2016, doi: 10.15230/SCSK.2016.42.2.153.


[8] L. Merquiol, G. Romano, A. Ianora, and I. D’Ambra, “Biotechnological applications of Scyphomedusae,” Marine Drugs, vol. 17, p. 604, Oct. 2019 doi: 10.3390/md17110604.


[9] A. Patwa, A. Thiéry, F. Lombard, M. K. Lilley, C. Boisset, J.-F. Bramard, J.-Y. Bottero, and P. Barthélémy, “Accumulation of nanoparticles in “jellyfish” mucus: A bio-inspired route to decontamination of nano-waste,” Scientific Reports, vol. 5, p. 11387, Jun. 2015, doi: 10.1038/ srep11387.


[10] N.-S. Xia, W.-X. Luo, J. Zhang, X.-Y. Xie, H.-J. Yang, S.-W. Li, M. Chen, and M.-H. Ng, “Bioluminescence of Aequorea macrodactyla, a common jellyfish species in the East China Sea,” Marine Biotechnology, vol. 4, pp. 155–162, Sep. 2001, doi: 10.1007/s1012601-0081-7.


[11] M. Zimmer, “GFP: From jellyfish to the Nobel prize and beyond,” Chemical Society Reviews, vol. 38, pp. 2823–2832, Jun. 2009, doi: 10.1039/ B904023D.


[12] I. D. Ambra and L. Merquiol, “Jellyfish from fisheries by-catches as a sustainable source of high-value compounds with biotechnological applications,” Marine Drugs, vol. 20, p. 266, Apr. 2022, doi: 10.3390/md20040266.


[13] A. Riyas, N. Dahanukar, K. A. Krishnan, and A. B. Kumar, “Scyphozoan jellyfish blooms and their relationship with environmental factors along the South-eastern Arabian Sea,” Marine Biology Research, vol. 17, pp. 185–199, May 2021, doi: 10.1080/17451000.2021. 1916034.


[14] B. Mcilwaine and M. R. Casado, “JellyNet: The convolutional neural network jellyfish bloom detector,” International Journal of Applied Earth Observation Geoinformation, vol. 97, p. 102279, Jan. 2021, doi: 10.1016/j.jag.2020.102279.


[15] C. Costello, L. Cao, S. Gelcich, M. Á. Cisneros- Mata, C. M. Free, H. E. Froehlich, C. D. Golden, G. Ishimura, J. Maier, and I. Macadam-Somer, “The future of food from the sea,” Nature, vol. 588, pp. 95–100, Aug. 2020, doi: 10.1038/s41586- 020-2616-y.


[16] L. Brotz, A. Schiariti, J. López-Martínez, J. Álvarez-Tello, Y.-H. Peggy Hsieh, R. P. Jones, J. Quiñones, Z. Dong, A. C. Morandini, and M. Preciado, “Jellyfish fisheries in the Americas: origin, state of the art, and perspectives on new fishing grounds,” Reviews in Fish Biology Fisheries, vol. 27, pp. 1–29, Sep. 2016, doi: 10.1007/s11160-016-9445-y.


[17] L. Torri, F. Tuccillo, S. Bonelli, S. Piraino, and A. Leone, “The attitudes of Italian consumers towards jellyfish as novel food,” Food Quality and Preference, vol. 79, p. 103782, Sep. 2019, doi: 10.1016/j.foodqual.2019.103782.


[18] B. Thumthanaruk, “Production of edible jellyfish for food,” in Commercial Edible Jellyfish: Valuable Ancient Zooplankton. Bangkok, Thailand: KMUTNB Textbook Publishing Center, 2022.


[19] P. Wongsa-Ngasri, P. Virulhakul, and B. Thumthanaruk, “Study of salted jellyfish production in commercial,” Fishery Technological Development Division, Department of Fisheries, Bangkok, Thailand, 2008.


[20] S. Sribuathong and S. Trevanich, “Role of research and development for food safety and food security in Thailand,” Journal of Developments in Sustainable Agriculture, vol. 5, pp. 110–120, Nov. 2009, doi: 10.11178/jdsa.5.110.


[21] F. A. Ramires, G. Bleve, S. D. Domenico, and A. Leone, “Combination of solid state and submerged fermentation strategies to produce a new jellyfish-based food,” Foods, vol. 11, p. 3974, Dec. 2022, doi: 10.3390/foods11243974.


[22] I. Kromfang, U. Chikhunthod, P. Karpilanondh, and B. Thumthanaruk, “Identification of volatile compounds in jellyfish protein hydrolysate,” Applied Science Engineering Progress, vol. 8, pp. 153–161, Dec. 2014, doi: 10.14416/j.ijast. 2014.10.003.


[23] Y. P. Hsieh, F.-M. Leong, and J. Rudloe, “Jellyfish as food,” Hydrobiologia, vol. 451, pp. 11–17, Jan. 2000, doi: 10.1007/978-94-010-0722-1.


[24] T. Klaiwong, P. Hutangura, S. Rutatip, P. Wongsa- Ngasri, and B. Thumthanaruk, “Comparative properties of pepsin hydrolyzed jellyfish protein from salted jellyfish,” Journal of Agricultural Science Technology, vol. 4, pp. 555–564, 2015.


[25] P. Wongsa-Ngasri, P. Virulhakul, and B. Thumthanaruk, “Study of salted jellyfish product ion in commercial , ” Fishery Technological Development Division, Department of Fisheries, Bangkok, Thailand, Sep. 2020, doi: 10.14456/sehs.2020.17.


[26] T. K. Doyle, J. D. Houghton, R. McDevitt, J. Davenport, and G. C. Hays, “The energy density of jellyfish: Estimates from bomb-calorimetry and proximate-composition,” Journal of Experimental Marine Biology Ecology, vol. 343, pp. 239–252, May 2007, doi: 10.1016/j.jembe. 2006.12.010.


[27] Z. B. Morais, A. M. Pintao, I. M. Costa, M. T. Calejo, N. M. Bandarra, and P. Abreu, “Composition and in vitro antioxidant effects of jellyfish Catostylus tagi from Sado Estuary (SW Portugal),” Journal of Aquatic Food Product Technology, vol. 18, pp. 90–107, Mar. 2009, doi: 10.1080/10498850802581799.


[28] N. M. Khong, F. M. Yusoff, B. Jamilah, M. Basri, I. Maznah, K. W. Chan, and J. Nishikawa, “Nutritional composition and total collagen content of three commercially important edible jellyfish,” Food Chemistry, vol. 196, pp. 953–960, Apr. 2016, doi: 10.1016/j.foodchem.2015.09.094.


[29] K. Wakabayashi, H. Sato, Y. Yoshie‐Stark, M. Ogushi, and Y. Tanaka, “Differences in the biochemical compositions of two dietary jellyfish species and their effects on the growth and survival of I bacus novemdentatus phyllosomas,” Aquaculture Nutrition, vol. 22, pp. 25–33, Jan. 2015, doi: 10.1111/anu.12228.


[30] A. Volpato, “Novel foods in the EU integrated administrative space: An institutional perspective,” in Novel Foods and Edible Insects in the European Union. Cham: Springer, p. 15, Sep. 2022, doi: 10.1007/978-3-031-13494-4_2.


[31] A. Leone, R. M. Lecci, M. Durante, F. Meli, and S. Piraino, “The bright side of gelatinous blooms: Nutraceutical value and antioxidant properties of three Mediterranean jellyfish (Scyphozoa),” Marine Drugs, vol. 13, pp. 4654–4681, Jul. 2015, doi: 10.3390/md13084654.


[32] J. D. Joseph, “Lipid composition of marine and estuarine invertebrates: Porifera and Cnidaria,” Progress in Lipid Research, vol. 18, pp. 1–30, Jan. 2003, doi:


[33] C. Ying, W. Ying, Z. Jing, and W. Na, “Potential dietary influence on the stable isotopes and fatty acid compositions of jellyfishes in the Yellow Sea,” Journal of the Marine Biological Association of the United Kingdom, vol. 92, pp. 1325–1333, Mar. 2012, doi: 10.1017/ S0025315412000082.


[34] V. Svetashev, “Fatty acids of the medusae Aurelia aurita (Linnaeus, 1758) and Rhopilema esculentum (Kishinouye, 1891): The presence of families of polyenoic acids with 24 and 26 carbon atoms,” Russian Journal of Marine Biology, vol. 45, pp. 113–117, May 2019, doi: 10.1134/S1063074019020123.


[35] D. M. Kariotoglou and S. K. Mastronicolis, “Sphingophosphonolipid molecular species from edible mollusks and a jellyfish,” Comparative Biochemistry Physiology Part B: Biochemistry Molecular Biology, vol. 136, pp. 27–44, Jul. 2003, doi: 10.1016/S1096-4959(03)00168-4.


[36] S. Geahchan, P. Baharlouei, and A. Rahman, “Marine collagen: A promising biomaterial for wound healing, skin anti-aging, and bone regeneration,” Marine Drugs, vol. 20, p. 61, Jan. 2022, doi: 10.3390/md20010061.


[37] W.-K. Song, D. Liu, L.-L. Sun, B.-F. Li, and H. Hou, “Physicochemical and biocompatibility properties of type I collagen from the skin of Nile Tilapia (Oreochromis niloticus) for biomedical applications,” Marine Drugs, vol. 17, p. 137, Feb. 2019, doi: 10.3390/md17030137.


[38] M. I. A. Rodríguez, L. G. R. Barroso, and M. L. Sánchez, “Collagen: A review on its sources and potential cosmetic applications,” Journal of Cosmetic Dermatology, vol. 17, pp. 20–26, Nov. 2017, doi: 10.1111/jocd.12450.


[39] N. M. Khong, F. M. Yusoff, B. Jamilah, M. Basri, I. Maznah, K. W. Chan, N. Armania, and J. Nishikawa, “Improved collagen extraction from jellyfish (Acromitus hardenbergi) with increased physical-induced solubilization processes,” Food Chemistry, vol. 251, pp. 41–50, Jun. 2018, doi: 10.1016/j.foodchem.2017.12.083.


[40] S. Miura and S. Kimura, “Jellyfish mesogloea collagen. Characterization of molecules as alpha 1 alpha 2 alpha 3 heterotrimers,” Journal of Biological Chemistry, vol. 260, pp. 15352–15356, Dec. 1985, doi: 10.1016/S0021-9258(18)95743-1.


[41] T. Nagai, T. Ogawa, T. Nakamura, T. Ito, H. Nakagawa, K. Fujiki, M. Nakao, and T. Yano, “Collagen of edible jellyfish exumbrella,” Journal of the Science of Food Agriculture, vol. 79, pp. 855–858, May 1999, doi: 10.1002/(SICI)1097-0010(19990501)79:6<855::AID-JSFA299>3.0.CO;2-N.


[42] M. Calejo, Z. Morais, and A. Fernandes, “Isolation and biochemical characterisation of a novel collagen from Catostylus tagi,” Journal of Biomaterials Science, Polymer Edition, vol. 20, pp. 2073–2087, Apr. 2012, doi: 10.1163/156856208X399125.


[43] S. Addad, J.-Y. Exposito, C. Faye, S. Ricard-Blum, and C. Lethias, “Isolation, characterization and biological evaluation of jellyfish collagen for use in biomedical applications,” Marine Drugs, vol. 9, pp. 967–983, Jun. 2011, doi: 10.3390/ md90609.


[44] F. F. Felician, R.-H. Yu, M.-Z. Li, C.-J. Li, H.-Q. Chen, Y. Jiang, T. Tang, W.-Y. Qi, and H.-M. Xu, “The wound healing potential of collagen peptides derived from the jellyfish Rhopilema esculentum,” Chinese Journal of Traumatology, vol. 22, pp. 12–20, Feb. 2019, doi: 10.1016/j.cjtee.2018.10.004.


[45] J. Zhang, R. Duan, L. Huang, Y. Song, and J. M. Regenstein, “Characterisation of acid-soluble and pepsin-solubilised collagen from jellyfish (Cyanea nozakii Kishinouye),” Food Chemistry, vol. 150, pp. 22–26, Nov. 2013, doi: 10.1016/j. foodchem.2013.10.116.


[46] Z. Barzideh, A. A. Latiff, C. Y. Gan, S. Benjakul, and A. A. Karim, “Isolation and characterisation of collagen from the ribbon jellyfish (Chrysaora sp.),” International Journal of Food Science and Technology, vol. 49, pp. 1490–1499, Dec 2013, doi: 10.1111/ijfs.12464.


[47] Z. Rastian, S. Pütz, Y. Wang, S. Kumar, F. Fleissner, T. Weidner, and S. H. Parekh, “Type I collagen from jellyfish Catostylus mosaicus for biomaterial applications,” ACS Biomaterials Science Engineering, vol. 4, pp. 2115–2125, Apr. 2018, doi: 10.1021/acsbiomaterials.7b00979.


[48] T. Nagai, T. Ogawa, T. Nakamura, T. Ito, H. Nakagawa, K. Fujiki, M. Nakao, and T. Yano, “Collagen of edible jellyfish exumbrella,” Journal of the Science of Food and Agriculture, vol. 79, pp. 855–858, May 1999, doi: 10.1002/ (SICI)1097-0010(19990501)79:6 <855::AID-JSFA299>3.0.CO;2-N.


[49] I. Milovanovic and M. Hayes, “Marine Gelatine from rest raw materials,” Applied Sciences, vol. 8, p. 2407, Nov. 2018, doi: 10.3390/app8122407.


[50] A. Lueyot, B. Wonganu, V. Rungsardthong, S. Vatanyoopaisarn, P. Hutangura, P. Wongsa- Ngasri, S. Roytrakul, S. Charoenlappanit, T. Wu, and B. Thumthanaruk, “Improved jellyfish gelatin quality through ultrasound-assisted salt removal and an extraction process,” PLOS One, vol. 17, p. e0276080, Nov. 2022, doi: 10.1371/ journal.pone.0276080.


[51] S. Silaprueng, B. Thumthanaruk, and P. Wongsa-ngasri, “Comparative functional properties of jellyfish (Lobonema smithii) protein hydrolysate as influenced by bromelain and hydrochloric acid,” Journal of Food Science and Agricultural Technology, vol. 1, no. 1, pp. 171–176, 2015.


[52] P. Muangrod, W. Charoenchokpanich, V. Rungsardthong, S. Vatanyoopaisarn, B. Wonganu, S. Roytrakul, and B. Thumthanaruk, “Effect of pepsin hydrolysis on antioxidant activity of jellyfish protein hydrolysate,” in E3S Web of Conferences, 2021, vol. 302, Art. no. 02010.


[53] M. Upata, T. Siriwoharn, S. Makkhun, S. Yarnpakdee, J. M. Regenstein, and S. Wangtueai, “Tyrosinase inhibitory and antioxidant activity of enzymatic protein hydrolysate from jellyfish (Lobonema smithii),” Foods, vol. 11, p. 615, Feb. 2022, doi: 10.3390/foods11040615.


[54] X. Liu, M. Zhang, Y. Shi, R. Qiao, W. Tang, and Z. Sun, “Production of the angiotensin I converting enzyme inhibitory peptides and isolation of four novel peptides from jellyfish (Rhopilema esculentum) protein hydrolysate,” Journal of the Science of Food and Agriculture, vol. 96, pp. 3240–3248, Oct. 2015, doi: 10.1002/ jsfa.7507.


[55] S. De Domenico, G. De Rinaldis, M. Paulmery, S. Piraino, and A. Leone, “Barrel jellyfish (Rhizostoma pulmo) as source of antioxidant peptides,” Marine Drugs, vol. 17, p. 134, Feb. 2019, doi: 10.3390/md17020134.


[56] P. B. T. So, P. Rubio, S. Lirio, A. P. Macabeo, H.-Y. Huang, M. J.-A. T. Corpuz, and O. B. Villaflores, “In vitro angiotensin I converting enzyme inhibition by a peptide isolated from Chiropsalmus quadrigatus Haeckel (box jellyfish) venom hydrolysate,” Toxicon, vol. 119, pp. 77–83, Sep. 2016, doi: 10.1016/j.toxicon.2016.04.050.


[57] Q. Zhang, C. Song, J. Zhao, X. Shi, M. Sun, J. Liu, Y. Fu, W. Jin, and B. Zhu, “Separation and characterization of antioxidative and angiotensin converting enzyme inhibitory peptide from jellyfish gonad hydrolysate,” Molecules, vol. 23, p. 94, Jan. 2018, doi: 10.3390/molecules 23010094.


[58] H.-D. Yoon, Y.-K. Kim, C.-W. Lim, S.-m. Yeun, M.-H. Lee, H.-S. Moon, N.-Y. Yoon, H.-Y. Park, and D.-S. Lee, “ACE-inhibitory properties of proteolytic hydrolysates from giant jellyfish Nemopilema nomurai,” Fisheries and Aquatic Sciences, vol. 14, pp. 174–178, Aug. 2011, doi: 10.5657/FAS.2011.0174.


[59] Z. Lv, C. Zhang, W. Song, Q. Chen, and Y. Wang, “Jellyfish collagen hydrolysate alleviates inflammation and oxidative stress and improves gut microbe composition in high-fat diet-fed mice,” Mediators of Inflammation, vol. 2022, Aug. 2022, doi: 10.1155/2022/5628702.


[60] J.-F. Ding, Y.-Y. Li, J.-J. Xu, X.-R. Su, X. Gao, and F.-P. Yue, “Study on effect of jellyfish collagen hydrolysate on anti-fatigue and anti-oxidation,” Food Hydrocolloids, vol. 25, pp. 1350–1353, Jul. 2011, doi: 10.1016/j.foodhyd. 2010.12.013.


[61] Y.-L. Zhuang, L.-P. Sun, X. Zhao, H. Hou, and B.-F. Li, “Investigation of gelatin polypeptides of jellyfish (Rhopilema esculentum) for their antioxidant activity in vitro,” Food Technology and Biotechnology, vol. 48, p. 222, Feb. 2010.


[62] T. Gomiero, “Soil degradation, land scarcity and food security: Reviewing a complex challenge,” Sustainability, vol. 8, p. 281, Mar. 2016, doi: 10.3390/su8030281.


[63] J. Spanner and G. Napolitano, “Healthy soils are the basis for healthy food production,” FAO, Rome, Italy, 2015.


[64] T. Gomiero, “Soil degradation, land scarcity and food security: Reviewing a complex challenge,” Sustainability, vol. 8, p. 281, Mar. 2016, doi: 10.3390/su8030281.


[65] K. Hasler, “Environmental impact of mineral fertilizers: Possible improvements through the adoption of eco-innovations,” Wageningen University and Research, Gelderland, Netherlands, 2017,


[66] I. Emadodin, T. Reinsch, R.-R. Ockens, and F. Taube, “Assessing the potential of jellyfish as an organic soil amendment to enhance seed germination and seedling establishment in sand dune restoration,” Agronomy, vol. 10, p. 863, Jun. 2020, doi: 10.3390/agronomy10060863.


[67] Y. Watanabe, Y. Ochi, H. Sugimoto, and H. Kato- Noguchi, “Weed inhibitory activity of Nomura's Jellyfish,” Environmental Control in Biology, vol. 53, pp. 165–167, Jan. 2015, doi: 10.2525/ ecb.53.165.


[68] K. Fukushi, S. Hori, G. Yasumura, K. Mifune, T. Asai, and J.-i. Tsujimoto, “Jellyfish (Aurelia aurita) Supernatant for Cherry Tomato (Lycopersicon esculentum Mill) and Tomato (Solanum lycopersicum) Cultivation,” Bulletin of the Society of Sea Water Science, Japan, vol. 71, pp. 112–119, Sep. 2018, doi: 10.11457/swsj. 71.2_112.


[69] S. Kim, T. Ezaki, Y. Lee, Y. Teramoto, and K. Chun, “Evaluating the effect of jellyfish chips on the survival and growth of Pinus thunbergii seedlings planted in a coastal area of Ehime Prefecture, Japan,” Journal of Forest Environmental Science Technology, vol. 34, pp. 196–198, Apr. 2018, doi: 10.7747/JFES.2018.34.2.196.


[70] K. Fukushi, N. Ishio, J.-i. Tsujimoto, K. Yokota, T. Hamatake, H. Sogabe, K.-i. Toriya, and T. Ninomiya, “Preliminary study on the potential usefulness of jellyfish as fertilizer,” Bulletin of the Society of Sea Water Science, Japan, vol. 58, pp. 209–217, Apr. 2004, doi: 10.11457/swsj 1965.58.209.


[71] A. I. Lillebø, C. Pita, J. G. Rodrigues, S. Ramos, and S. Villasante, “How can marine ecosystem services support the Blue Growth agenda?,” Marine Policy, vol. 81, pp. 132–142, Jul. 2017, doi: 10.1016/j.marpol.2017.03.008.


[72] S. C. Doney, M. Ruckelshaus, J. Emmett Duffy, J. P. Barry, F. Chan, C. A. English, H. M. Galindo, J. M. Grebmeier, A. B. Hollowed, and N. Knowlton, “Climate change impacts on marine ecosystems,” Annual Review of Marine Science, vol. 4, pp. 11– 37, Jan. 2012, doi: 10.1146/annurev-marine- 041911-111611.


[73] Z. Atafar, A. Mesdaghinia, J. Nouri, M. Homaee, M. Yunesian, M. Ahmadimoghaddam, and A. H. Mahvi, “Effect of fertilizer application on soil heavy metal concentration,” Environmental Monitoring Assessment, vol. 160, pp. 83–89, Dec. 2008, doi: 10.1007/s10661-008-0659-x.


[74] S.-I. Uye and H. Shimauchi, “Population biomass, feeding, respiration and growth rates, and carbon budget of the scyphomedusa Aurelia aurita in the Inland Sea of Japan,” Journal of Plankton Research, vol. 27, pp. 237–248, Mar. 2005, doi: 10.1093/plankt/fbh172.


[75] K. W. Chun, E. Damdinsuren, Y. R. Kim, and  T. Ezaki, “Effect of jellyfish fertilizer on seedling growth and soil properties,” Journal of the Japanese Society of Revegetation Technology, vol. 38, pp. 192–195, Jan. 2012, doi: 10.7211/ jjsrt.38.192.


[76] V. Samaraweera and D. Dissanayake, “Use of Jellyfish as a potential organic fertilizer and its effect on the growth of okra, Abelmoschus esculentus,” Ceylon Journal of Science, vol. 51, pp. 299–306, Sep. 2022, doi: 10.4038/cjs.v 51i3.8037.


[77] A. Srivastava and K. Katiyar, The Ecology of Bioluminescence, in Bioluminescence-Technology and Biology. IntechOpen, London, UK, 2021,


[78] D. C. Prasher, V. K. Eckenrode, W. W. Ward, F. G. Prendergast, and M. Cormier, “Primary structure of the Aequorea victoria green-fluorescent protein,” Gene, vol. 111, pp. 229–233, Feb. 1992, doi: 10.1016/0378-1119(92)90691-H.


[79] M. Chalfie, Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher, “Green fluorescent protein as a marker for gene expression,” Science, vol. 263, pp. 802–805, Feb. 1994, doi: 10.1126/science.8303.


[80] S. Wang and T. Hazelrigg, “Implications for bcd mRNA localization from spatial distribution of exu protein in Drosophila oogenesis,” Nature, vol. 369, pp. 400–403, Jun. 1994, doi: 10.1038/ 369400a0.


[81] M. Zimmer, Introduction to Fluorescent Proteins. FL, USA: CRC Press, 2014:


[82] F. Boero, “Review of jellyfish blooms in the Mediterranean and Black Sea,” Studies and Reviews, no. 92, May, 2013, doi: 10.1080/17451000.2014.880790.


[83] T. K. Doyle, H. De Haas, D. Cotton, B. Dorschel, V. Cummins, J. D. Houghton, J. Davenport, and G. C. Hays, “Widespread occurrence of the jellyfish Pelagia noctiluca in Irish coastal and shelf waters,” Journal of Plankton Research, vol. 30, pp. 963–968, May 2008, doi: 10.1093/ plankt/fbn052.


[84] C. R. Bakshani, A. L. Morales-Garcia, M. Althaus, M. D. Wilcox, J. P. Pearson, J. C. Bythell, and J. G. Burgess, “Evolutionary conservation of the antimicrobial function of mucus: A first defence against infection,” npj Biofilms and Microbiomes, vol. 4, Jul. 2018, Art. no. 14, doi: 10.1038/ s41522-018-0057-2.


[85] J. A. Lee, M.-K. Yeo, and S. S. Kim, “Hydra protein reduces the toxicity of Ag–PVP nanoparticles in a 3D A549 cell line,” Molecular Cellular Toxicology, vol. 16, pp. 73–81, Dec. 2019, doi: 10.1007/s13273-019-00061-w.


[86] S. W. Geum and M.-K. Yeo, “Reduction in toxicity of polystyrene nanoplastics combined with phenanthrene through binding of jellyfish mucin with nanoplastics,” Nanomaterials, vol. 12, p. 1427, Apr. 2022, doi: 10.3390/ nano12091427.


[87] J. Ha, E. Kim, B. G. Lee, M.-K. J. M. Yeo, and C. Toxicology, “Capture and toxicity assessment of Ag citrate nanoparticles using jellyfish extract,” Molecular and Cellular Toxicology, vol. 16, pp. 431–439, Sep. 2020, doi: 10.1007/ s13273-020-00100-x.


[88] T. Tinta, K. Klun, and G. J. Herndl, “The importance of jellyfish–microbe interactions for biogeochemical cycles in the ocean,” Limnology Oceanography, vol. 66, pp. 2011–2032, Apr. 2021, doi: 10.1002/lno.11741.


[89] H. Yuan, P. Zhou, and D. Zhou, “What is low-carbon development? A conceptual analysis,” Energy Procedia, vol. 5, pp. 1706–1712, Apr. 2011, doi: 10.1016/j.egypro.2011.03.290.


[90] C. G. Alimba and C. Faggio, “Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile,” Environmental Toxicology Pharmacology, vol. 68, pp. 61–74, May 2019, doi: 10.1016/j.etap.2019.03.001.


[91] G. Everaert, M. De Rijcke, B. Lonneville, C. Janssen, T. Backhaus, J. Mees, E. van Sebille, A. Koelmans, A. I. Catarino, and M. B. Vandegehuchte, “Risks of floating microplastic in the global ocean,” Environmental Pollution, vol. 267, Dec. 2020, Art. no. 115499, doi: 10.1016/j.envpol.2020.115499.


[92] K. Pabortsava and R. S. Lampitt, “High concentrations of plastic hidden beneath the surface of the Atlantic Ocean,” Nature Communications, vol. 11, p. 4073, Aug. 2020, doi: 10.1038/s41467- 020-17932-9.


[93] K. Ugwu, A. Herrera, and M. Gómez, “Microplastics in marine biota: A review,” Marine Pollution Bulletin, vol. 169, Aug. 2021, Art. no. 112540, doi: 10.1016/j.marpolbul. 2021.112540.


[94] V. Romero-Kutzner, J. Tarí, A. Herrera, I. Martínez, D. Bondyale-Juez, and M. Góme, “Ingestion of polyethylene microspheres occur only in presence of prey in the jellyfish Aurelia aurita,” Marine Pollution Bulletin, vol. 175, Feb. 2022, Art. no. 113269, doi: 10.1016/j.marpolbul. 2021.113269.


[95] J. Rapp, A. Herrera, D. R. Bondyale-Juez, M. González-Pleiter, S. Reinold, M. Asensio, I. Martínez, and M. Gómez, “Microplastic ingestion in jellyfish Pelagia noctiluca (Forsskal, 1775) in the North Atlantic Ocean,” Marine Pollution Bulletin, vol. 166, May 2021, Art. no. 112266, doi: 10.1016/j.marpolbul.2021.112266.


[96] A. Macali, A. Semenov, V. Venuti, V. Crupi, F. D’Amico, B. Rossi, I. Corsi, and E. Bergami, “Episodic records of jellyfish ingestion of plastic items reveal a novel pathway for trophic transference of marine litter,” Scientific Reports, vol. 8, p. 6105, Apr. 2018, doi: 10.1038/s41598- 018-24427-7.


[97] M. Cole, P. Lindeque, E. Fileman, C. Halsband, R. Goodhead, J. Moger, and T. S. Galloway, “Microplastic ingestion by zooplankton,” Environmental Science and Technology, vol. 47, pp. 6646–6655, May 2013, doi: 10.1021/es 400663f.


[98] A. L. Lusher, M. Mchugh, and R. C. Thompson, “Occurrence of microplastics in the gastrointestinal tract of pelagic and demersal fish from the English Channel,” Marine Pollution Bulletin, vol. 67, pp. 94–99, Feb. 2013, doi: 10.1016/j. marpolbul.2012.11.028.


[99] U. Båmstedt, “Trophodynamics of the scyphomedusae Aurelia aurita. Predation rate in relation to abundance, size and type of prey organism,” Journal of Plankton Research, vol. 12, pp. 215– 229, Jan. 1990, doi: 10.1093/plankt/12.1.215.


[100] U. Båmstedt, M. Martinussen, and S. Matsakis, “Trophodynamics of the two scyphozoan jellyfishes, Aurelia aurita and Cyanea capillata, in western Norway,” ICES Journal of Marine Science, vol. 51, pp. 369–382, Aug. 1994, doi: 10.1006/jmsc.1994.1039.


[101] R. Rodríguez-Torres, R. Almeda, M. Kristiansen, S. Rist, M. S. Winding, and T. G. Nielsen, “Ingestion and impact of microplastics on arctic Calanus copepods,” Aquatic Toxicology, vol. 228, Nov. 2020, Art. no. 105631, doi: 10.1016/j. aquatox.2020.105631.


[102] K. You, C. Ma, H. Gao, F. Li, M. Zhang, Y. Qiu, and B. Wang, “Research on the jellyfish (Rhopilema esculentum Kishinouye) and associated aquaculture techniques in China: Current status,” Aquaculture International, vol. 15, pp. 479–488, Jun. 2007, doi: 10.1007/ s10499-007-9114-1.


[103] Ž. Lengar, K. Klun, I. Dogsa, A. Rotter, and D. Stopar, “Sequestration of polystyrene microplastics by jellyfish mucus,” Frontiers in Marine Science, vol. 8, Jul. 2021, Art. no. 690749, doi: 10.3389/fmars.2021.690749.


[104] I. Jakubowicz, J. Enebro, and N. Yarahmadi, “Challenges in the search for nanoplastics in the environment—A critical review from the polymer science perspective,” Polymer Testing, vol. 93, Jan. 2021, Art. no. 106953, doi: 10.1016/j.polymertesting.2020.106953.


[105] M. Haave, C. Lorenz, S. Primpke, and G. Gerdts, “Different stories told by small and large microplastics in sediment-first report of microplastic concentrations in an urban recipient in Norway,” Marine Pollution Bulletin, vol. 141, pp. 501–513, Apr. 2019, doi: 10.1016/j. marpolbul.2019.02.015.


[106] L. Yang, Y. Zhang, S. Kang, Z. Wang, and C. Wu, “Microplastics in soil: A review on methods, occurrence, sources, and potential risk,” Science of the Total Environment, vol. 780, Aug. 2021, Art. no. 146546, doi: 10.1016/j.scitotenv. 2021.146546.


[107] M. Prüst, J. Meijer, and R .H. Westerink, “The plastic brain: Neurotoxicity of micro-and nanoplastics,” Particle Fibre Toxicology, vol. 17, pp. 1–16, Jun. 2020, doi: 10.1186/s12989-020-00358-y.


[108] S. De Domenico, G. De Rinaldis, M. Mammone, M. Bosch-Belmar, S. Piraino, and A. Leone, “The zooxanthellate jellyfish holobiont cassiopea andromeda, a source of soluble bioactive compounds,” Marine Drugs, vol. 21, p. 272, Apr. 2023, doi: 10.3390/md21050272.


[109] G. Riccio, K.A. Martinez, J. Martín, F. Reyes, I. D’Ambra, and C. Lauritano, “Jellyfish as an alternative source of bioactive antiproliferative compounds,” Marine Drugs, vol. 20, p. 350, May 2022, doi: 10.3390/md20060350.


[110] L. Prieto, A. Enrique-Navarro, R. L. Volsi, and M. J. Ortega, “The large jellyfish Rhizostoma luteum as sustainable a resource for antioxidant properties, nutraceutical value and biomedical applications,” Marine Drugs, vol. 16, p. 396, Oct. 2018, doi: 10.3390/md16100396.


[111] Y. Cao, J. Gao, L. Zhang, N. Qin, B. Zhu, and X. Xia, “Jellyfish skin polysaccharides enhance intestinal barrier function and modulate the gut microbiota in mice with DSS-induced colitis,” Food Function, vol. 12, pp. 10121–10135, Aug. 2021, doi: 10.1039/D1FO02001C.


[112] Z. Barzideh, A. A. Latiff, C.-Y. Gan, M. Z. Abedin, and A. K. Alias, “ACE inhibitory and antioxidant activities of collagen hydrolysates from the ribbon jellyfish (Chrysaora sp.),” Food Technology and Biotechnology, vol. 52, pp. 495–504, Dec. 2014, doi: 10.17113/ ftb.


[113] D. M. Esparza-Espinoza, H. del Carmen Santacruz-Ortega, M. Plascencia-Jatomea, S. P. Aubourg, J. A. Salazar-Leyva, F. Rodríguez- Felix, and J. M. Ezquerra-Brauer, “Chemical- Structural identification of crude gelatin from jellyfish (Stomolophus meleagris) and evaluation of its potential biological activity,” Fishes, vol. 8, p. 246, May 2023, doi: 10.3390/ fishes8050246.


[114] R. C. F. Cheung, T. B. Ng, and J. H. Wong, “Marine peptides: Bioactivities and applications,” Marine Drugs, vol. 13, pp. 4006–4043, Jun. 2015, doi: 10.3390/md13074006.


[115] J. Li, Q. Li, J. Li, and B. Zhou, “Peptides derived from Rhopilema esculentum hydrolysate exhibit angiotensin converting enzyme (ACE) inhibitory and antioxidant abilities,” Molecules, vol. 19, pp. 13587–13602, Sep. 2014, doi: 10.3390/molecules190913587.


[116] H. Yu, X. Liu, R. Xing, S. Liu, C. Li, and P. Li, “Radical scavenging activity of protein from tentacles of jellyfish Rhopilema esculentum,” Bioorganic Medicinal Chemistry Letters, vol. 15, pp. 2659–2664, May 2005, doi: 10.1016/j.bmcl. 2005.03.044.


[117] X. Liu, M. Zhang, A. Jia, Y. Zhang, H. Zhu, C. Zhang, Z. Sun, and C. Liu, “Purification and characterization of angiotensin I converting enzyme inhibitory peptides from jellyfish Rhopilema esculentum,” Food Research International, vol. 50, pp. 339–343, Jan. 2013, doi: 10.1016/j.foodres.2012.11.002.


[118] Y. Zhuang, L. Sun, X. Zhao, J. Wang, H. Hou, and B. Li, “Antioxidant and melanogenesis‐inhibitory activities of collagen peptide from jellyfish (Rhopilema esculentum),” Journal of the Science of Food Agriculture, vol. 89, pp. 1722–1727, Jun. 2009, doi: 10.1002/jsfa.3645.


[119] X. Liu, M. Zhang, C. Zhang, and C. Liu, “Angiotensin converting enzyme (ACE) inhibitory, antihypertensive and antihyperlipidaemic activities of protein hydrolysates from Rhopilema esculentum,” Food Chemistry, vol. 134, pp. 2134–2140, Oct. 2012, doi: 10.1016/j.foodchem.2012.04.023.


[120] X. Cheng, Z. Shao, C. Li, L. Yu, M.A. Raja, and C. Liu, “Isolation, characterization and evaluation of collagen from jellyfish Rhopilema esculentum Kishinouye for use in hemostatic applications,” PLOS One, vol. 12, Jan. 2017, Art. no. e0169731, doi: 10.1371/journal. pone.0169731.


[121] L.-K. Sun, Y. Yoshii, A. Hyodo, H. Tsurushima, A. Saito, T. Harakuni, Y.-P. Li, M. Nozaki, and N. Morine, “Apoptosis induced by box jellyfish (Chiropsalmus quadrigatus) toxin in glioma and vascular endothelial cell lines,” Toxicon, vol. 40, pp. 441–446, Apr. 2002, doi: 10.1016/ S0041-0101(01)00231-8.


[122] Y. Zhuang, H. Hou, X. Zhao, Z. Zhang, and B. Li, “Effects of collagen and collagen hydrolysate from jellyfish (Rhopilema esculentum) on mice skin photoaging induced by UV irradiation,” Journal of Food Science, vol. 74, pp. H183-H188, Jul. 2009, doi: 10.1111/j.1750-3841.2009.01236.x.


[123] J. Fan, Y. Zhuang, and B. Li, “Effects of collagen and collagen hydrolysate from jellyfish umbrella on histological and immunity changes of mice photoaging,” Nutrients, vol. 5, pp. 223– 233, Jan. 2013, doi: 10.3390/nu5010223.


[124] J. Rocha, L. Peixe, N. C. Gomes, and R. Calado, “Cnidarians as a source of new marine bioactive compounds—An overview of the last decade and future steps for bioprospecting,” Marine Drugs, vol. 9, pp. 1860–1886, Oct. 201, doi: 10.3390/md9101860.


[125] T. V. Ovchinnikova, S. V. Balandin, G. M. Aleshina, A. A. Tagaev, Y. F. Leonova, E. D. Krasnodembsky, A. V. Men’shenin, and V. N. Kokryakov, “Aurelin, a novel antimicrobial peptide from jellyfish Aurelia aurita with structural features of defensins and channel-blocking toxins,” Biochemical and Biophysical Research Communications, vol. 348, pp. 514– 523, Sep. 2006, doi: 10.1016/j.bbrc.2006.07.078.


[126] K. Ushida, R. Sato, T. Momma, S. Tanaka, T. Kaneko, and H. Morishita, “Jellyfish mucin (qniumucin) extracted with a modified protocol indicated its existence as a constituent of the extracellular matrix,” Biochimica et Biophysica Acta -General Subjects, vol. 1866, Oct. 2022, Art. no. 130189, doi: 10.1016/ j.bbagen.2022.130189.


[127] M. Jouiaei, A. A. Yanagihara, B. Madio, T. J. Nevalainen, P. F. Alewood, and B. G. Fry, “Ancient venom systems: A review on cnidaria toxins,” Toxins, vol. 7, pp. 2251–2271, Jun. 2015, doi: 10.3390/toxins7062251.


[128] L. B. Doonan, S. Lynham, C. Quinlan, S. C. Ibiji, C. E. Winter, G. Padilla, A. Jaimes- Becerra, A. C. Morandini, A. C. Marques, and P. F. Long, “Venom composition does not vary greatly between different nematocyst types isolated from the primary tentacles of Olindias sambaquiensis (Cnidaria: Hydrozoa),” The Biological Bulletin, vol. 237, pp. 26–35, Aug. 2019, doi: 10.1086/705113.


[129] A. Jaimes-Becerra, R. Gacesa, L. B. Doonan, A. Hartigan, A.C. Marques, B. Okamura, and P. F. Long, “Beyond primary sequence”— proteomic data reveal complex toxins in cnidarian venoms,” Integrative Comparative Biology, vol. 59, pp. 777–785, Jul. 2019, doi: 10.1093/ icb/icz106.


[130] A. Ballesteros, C. Trullas, E. Jourdan, and J.-M. Gili, “Inhibition of nematocyst discharge from Pelagia noctiluca (Cnidaria: Scyphozoa)— Prevention measures against jellyfish stings,” Marine Drugs, vol. 20, p. 571, Sep. 2022, doi: 10.3390/md2009057.


[131] H. Lee, S. K. Bae, M. Kim, M. J. Pyo, M. Kim, S. Yang, C.-k. Won, W.D. Yoon, C. H. Han, and C. Kang, “Anticancer effect of Nemopilema nomurai jellyfish venom on HepG2 cells and a tumor xenograft animal model,” Evidence-Based Complementary Alternative Medicine, vol. 2017, Jul. 2017, doi: 10.1155/2017/2752716.


[132] E. Balamurugan, D. R. Kumar, and V. P. Menon, “Proapoptotic effect of Chrysaora quinquecirrha (Sea Nettle) nematocyst venom peptide in HEp 2 and HeLa cells,” European Journal of Scientific Research, vol. 35, pp. 355–367, Nov. 2009.


[133] Y. Ayed, A. Dellai, H. B. Mansour, H. Bacha, and S. Abid, “Analgesic and antibutyrylcholinestrasic activities of the venom prepared from the Mediterranean jellyfish Pelagia noctiluca (Forsskal, 1775),” Annals of Clinical Microbiology and Antimicrobials, vol. 11, pp. 1–8, Jun. 2012, doi: 10.1186/1476-0711- 11-15.


[134] R. Li, H. Yu, R. Xing, S. Liu, Y. Qing, K. Li, B. Li, X. Meng, J. Cui, and P. Li, “Isolation, identification and characterization of a novel antioxidant protein from the nematocyst of the jellyfish Stomolophus meleagris,” International Journal of Biological Macromolecules, vol. 51, pp. 274–278, Oct. 2012, doi: 10.1016/j.ijbiomac. 2012.05.015.


[135] K. Suganthi, S. Bragadeeswaran, N. S. Kumaran, C. Thenmozhi, and S. Thangaraj, “In vitro antioxidant activities of jelly fish Chrysaora quinquecirrha venom from southeast coast of India,” Asian Pacific Journal of Tropical Biomedicine, vol. 2, pp. S347–S351, Jan. 2012, doi: 10.1016/S2221-1691(12)60186-5.


[136] A. Rastogi, S. Biswas, A. Sarkar, and D. Chakrabarty, “Anticoagulant activity of Moon jellyfish (Aurelia aurita) tentacle extract,” Toxicon, vol. 60, pp. 719–723, Oct. 2012, doi: 10.1016/j.toxicon.2012.05.008.


[137] M. R. Mirshamsi, R. Omranipour, A. Vazirizadeh, A. Fakhri, F. Zangeneh, G. H. Mohebbi, R. Seyedian, and J. Pourahmad, “Persian Gulf Jellyfish (Cassiopea andromeda) venom fractions induce selective injury and cytochrome c release in mitochondria obtained from breast adenocarcinoma patients,” Asian Pacific Journal of Cancer Prevention: APJCP, vol. 18, p. 277, Jan. 2017, doi: 10.22034/APJCP. 2017.18.1.277.


[138] A. Li, H. Yu, R. Li, Y. Yue, C. Yu, H. Geng, S. Liu, R. Xing, and P. Li, “Jellyfish Nemopilema nomurai causes myotoxicity through the metalloprotease component of venom,” Biomedicine Pharmacotherapy, vol. 151, Jul. 2022, Art. no. 113192, doi: 10.1016/j. biopha.2022.113192.


[139] H. Yu, X. Liu, X. Dong, C. Li, R. Xing, S. Liu, and P. Li, “Insecticidal activity of proteinous venom from tentacle of jellyfish Rhopilema esculentum Kishinouye,” Bioorganic Medicinal Chemistry Letters, vol. 15, pp. 4949–4952, Nov. 2005, doi: 10.1016/j.bmcl.2005.08.015.


[140] H. Yu, C. Li, R. Li, R. Xing, S. Liu, and P. Li, “Factors influencing hemolytic activity of venom from the jellyfish Rhopilema esculentum Kishinouye,” Food Chemical Toxicology, vol. 45, pp. 1173–1178, Jul. 2007, doi: 10.1016/j.fct. 2006.12.025.


[141] H. Lee, E.-s. Jung, C. Kang, W. D. Yoon, J.-S. Kim, and E. Kim, “Scyphozoan jellyfish venom metalloproteinases and their role in the cytotoxicity,” Toxicon, vol. 58, pp. 277–284, Sep. 2011, doi: 10.1016/j.toxicon.2011.06.007.


[142] H. Nagai, K. Takuwa-Kuroda, M. Nakao, N. Oshiro, S. Iwanaga, and T. Nakajima, “A novel protein toxin from the deadly box jellyfish (sea wasp, Habu-kurage) Chiropsalmus quadrigatus,” Bioscience, Biotechnology and Biochemistry, vol. 66, pp. 97–102, Jan. 2002, doi: 10.1271/bbb.66.97


[143] J. L. Morales-Landa, O. Zapata-Perez, R. Cedillo- Rivera, L. Segura-Puertas, R. Sima-Alvarez, and J. Sanchez-Rodriguez, “Antimicrobial, antiprotozoal, and toxic activities of cnidarian extracts from the Mexican Caribbean Sea,” Pharmaceutical Biology, vol. 45, pp. 37–43, Oct. 2008, doi: 10.1080/138802006010263.

Full Text: PDF

DOI: 10.14416/j.asep.2024.01.004


  • There are currently no refbacks.