Page Header

Nanolignin for Fire Retardant Composite

Widya Fatriasari, Lee Seng Hua

Abstract


-

[1]    S. Areeya, E. J. Panakkal, P. Kunmanee, A. Tawai, S. Amornraksa, M. Sriariyanun, A. Kaoloun, N. Hartini, Y. S. Cheng, M. Kchaou, S. Dasari, and M. P. Gundupalli, “A review of sugarcane biorefinery: From waste to value-added products,” Applied Science and Engineering Progress, vol. 17, no. 3, 2024, Art. no. 7402, doi: 10.14416/j.asep.2024.06.004.

 [2]   P. Dai, M. Liang, X. Ma, Y. Luo, M. He, X. Gu, Q. Gu, I. Hussain, and Z. Luo, “Highly efficient, environmentally friendly lignin-based flame retardant used in epoxy resin,” ACS Omega, vol. 5, pp. 32084–32093, 2020, doi: 10.1021/acsomega. 0c05146.

[3]    H. Vahabi, N. Brosse, N. H. A. Latif, W. Fatriasari, N. N. Solihat, R. Hashim, M. H. Hussin, F. Laoutid, and M. R. Saeb, “Nanolignin in materials science and technology—does flame retardancy matter?,” in Biopolymeric Nanomaterials, S. Kanwar, A. Kumar, T. A. Nguyen, S. Sharma, Y. Slimani, Eds. Amsterdam: Elsevier, 2021, pp. 515–559.

[4]    M. H. Hussin, J. N. Appaturi, N. E. Poh, N. H. A. Latif, N. Brosse, I. Ziegler-Devin, H. Vahabi, F. A. Syamani, W. Fatriasari, N. N. Solihat, and A. Karimah, “A recent advancement on preparation, characterization and application of nanolignin,” International Journal of Biological Macromolecules, vol. 200, pp. 303–326, 2022, doi: 10.1016/j.ijbiomac.2022.01.007.

[5]    B. Cholletm, J. M. Lopez-Cuesta, F. Laoutid, and L. Ferry, “Lignin nanoparticles as a promising way for enhancing lignin flame retardant effect in polylactide,” Materials, vol. 12, 2019, Art. no. 2132, doi: 10.3390/ma12132132.

[6]    H. Yu, W. Zhan, and Y. Liu, “Engineering lignin nanoparticles deposition on melamine sponge skeleton for absorbent and flame retardant materials,” Waste and Biomass Valorization, vol. 11, pp. 4561–4569, 2020, doi: 10.1007/s12649-019-00763-1.

[7]    X. Wang, S. L. Ji, X. Q. Wang, H. Y. Bian, L. R. Lin, H. Q. Dai, and H. Xiao, “Thermally conductive, super flexible and flame-retardant BN-OH/PVA composite film reinforced by lignin nanoparticles,” Journal of Materials Chemistry C, vol. 7, pp. 14159–14169, 2019, doi: 10.1039/C9TC04961D.

[8]    T. He, F. Chen, W. Zhu, and N. Yan, “Functionalized lignin nanoparticles for producing mechanically strong and tough flame-retardant polyurethane elastomers,” International Journal of Biological Macromolecules, vol. 209, pp. 1339–1351, 2022, doi: 10.1016/j.ijbiomac. 2022.04.089.

[9]    D. Meng, H. Wang, Y. Li, J. Liu, J. Sun, X. Gu, H. Wang, and S. Zhang, “Constructing lignin based nanoparticles towards flame retardant thermoplastic polyurethane composites with improved mechanical and oxidation resistant properties,” International Journal of Biological Macromolecules, vol. 253, 2023, Art. no. 126570, doi: 10.1016/j.ijbiomac.2023.126570.

[10]  N. I. Jeffri, N. F. M. Rawi, M. H. B. M. Kassim, and C. K. Abdullah, “Unlocking the potential: Evolving role of technical lignin in diverse applications and overcoming challenges,” International Journal of Biological Macromolecules, vol. 274, 2024, Art. no. 133506, doi: 10.1016/ j.ijbiomac.2024.133506

[11]  F. Laoutid, H. Vahabi, M. R. Saeb, and P. Dubois, “Lignin as a flame retardant for biopolymers,” in Micro and Nanolignin in Aqueous Dispersions and Polymers, D. Puglia, C. Santulli, and F. Sarasini, Eds. Amsterdam: Elsevier, 2022, pp. 173–202.

[12] D. Bhattacharyya, M. Sriariyanun, A. Tawai, “Sustainable development: Toward net zero and carbon neutrality,” Applied Science and Engineering Progress, vol. 18, no. 3, 2025, Art. no. 7716, doi: 10.14416/j.asep.2025.01.005.

Full Text: PDF

DOI: 10.14416/j.asep.2025.04.001

Refbacks

  • There are currently no refbacks.