Impact of Sisal Fiber Reinforcement on the Mechanical and Physical Properties of One-Part Geopolymer Mortar with a Ternary Binder System
Abstract
Keywords
[1] E. S. Poojalakshmi, J. Patel, B. Sunantha, B. S. Thomas, K. P. Ramaswamy, and R. Ahmad Khan, “Effect of mechanical activation on the properties of rice husk ash-based one part geopolymer,” Materials Today: Proceedings, Apr. 2023, doi: 10.1016/j.matpr.2023.04.306.
[2] D. Khale and R. Chaudhary, “Mechanism of geopolymerization and factors influencing its development: A review,” Journal of Materials Science, vol. 42, no. 3, pp. 729–746, Feb. 2007, doi: 10.1007/s10853-006-0401-4.
[3] M. Tuyan, Ö. Andiç-Çakir, and K. Ramyar, “Effect of alkali activator concentration and curing condition on strength and microstructure of waste clay brick powder-based geopolymer,” Composites Part B: Engineering, vol. 135, pp. 242–252, Feb. 2018, doi: 10.1016/j.compositesb.2017.10.013.
[4] K. Arunkumar, M. Muthukannan, A. S. Kumar, A. C. Ganesh, and R. K. Devi, “Cleaner environment approach by the utilization of low calcium wood ash in geopolymer concrete,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5165, doi: 10.14416/j.asep.2021.06.005.
[5] A. Petcherdchoo, T. Hongubon, N. Thanasisathit, K. Punthutaecha, and S. H. Jang, “Effect of curing time on bond strength between reinforcement and fly-ash geopolymer concrete,” Applied Science and Engineering Progress, vol. 13, no. 2, pp. 127–135, Jun. 2020, doi: 10.14416/j.asep.2020.03.006.
[6] D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, and B. V. Rangan, “Fly ash-based geopolymer concrete,” Australian Journal of Structural Engineering, vol. 6, no. 1, pp. 77–86, Sep. 2015, doi: 10.1080/13287982.2005.11464946.
[7] Z. Li and S. Li, “Effects of wetting and drying on alkalinity and strength of fly ash/slag-activated materials,” Construction and Building Materials, vol. 254, p. 119069, Sep. 2020, doi: 10.1016/j.conbuildmat.2020.119069.
[8] M. Mudgal, R. K. Chouhan, S. Kushwah, and A. K. Srivastava, “Enhancing the reactivity and properties of fly ash based solid form geopolymer through ball-milling,” Emerging Materials Research, vol. 9, no. 1, pp. 1–6, Mar. 2020, doi: 10.1680/jemmr.19.00065.
[9] I. Faridmehr, M. A. Sahraei, M. L. Nehdi, and K. A. Valerievich, “Optimization of fly ash—slag one-part geopolymers with improved properties,” Materials, vol. 16, no. 6, p. 2348, Mar. 2023, doi: 10.3390/ma16062348.
[10] N. Singh, “Fly ash-based geopolymer binder: A future construction material,” Minerals, vol. 8, no. 7, p. 299, Jul. 2018, doi: 10.3390/min8070299.
[11] F. Pacheco-Torgal, D. Moura, Y. Ding, and S. Jalali, “Composition, strength and workability of alkali-activated metakaolin based mortars,” Construction and Building Materials, vol. 25, no. 9, pp. 3732–3745, Sep. 2011, doi: 10.1016/j.conbuildmat.2011.04.017.
[12] J. Ren, H. Sun, Q. Li, Z. Li, L. Ling, X. Zhang, Y. Wang, and F. Xing, “Experimental comparisons between one-part and normal (two-part) alkali-activated slag binders,” Construction and Building Materials, vol. 309, Nov. 2021, Art. no. 125177, doi: 10.1016/j.conbuildmat.2021.125177.
[13] Y. H. M. Amran, R. Alyousef, H. Alabduljabbar, and M. El-Zeadani, “Clean production and properties of geopolymer concrete; A review,” Journal of Cleaner Production, vol. 251, Apr. 2020, Art. no. 119679, doi: 10.1016/j.jclepro.2019.119679.
[14] A. Wongsa, R. Kunthawatwong, S. Naenudon, V. Sata, and P. Chindaprasirt, “Natural fiber reinforced high calcium fly ash geopolymer mortar,” Construction and Building Materials, vol. 241, Apr. 2020, Art. no. 118143, doi: 10.1016/j.conbuildmat.2020.118143.
[15] Z. Deng, S. Zhang, and Z. Deng, “PVA fiber-reinforced geopolymer mortar made with hybrid recycled aggregates: Toward thermal insulation, lightweight and improved durability,” Journal of Cleaner Production, vol. 426, Nov. 2023, Art. no. 139200, doi: 10.1016/j.jclepro.2023.139200.
[16] J. Ayawanna and A. Poowancum, “Enhancing flexural strength of metakaolin-based geopolymer reinforced with different types of fibers,” Sustainable Chemistry and Pharmacy, vol. 37, Feb. 2024, Art. no. 101439, doi: 10.1016/j.scp.2024.101439.
[17] M. G. Sá Ribeiro, I. P. A. Miranda, W. M. Kriven, A. Ozer, and R. A. Sá Ribeiro, “High strength and low water absorption of bamboo fiber-reinforced geopolymer composites,” Construction and Building Materials, vol. 411, Jan. 2024, Art. no. 134179, doi: 10.1016/j.conbuildmat.2023.134179.
[18] A. Suwansaard, T. Kongpun, and M. Khemkhao, “Properties of mortars mixed with polystyrene and hemp fiber wastes,” Applied Science and Engineering Progress, vol. 15, no. 1, 2022, Art. no. 5405, doi: 10.14416/j.asep.2021.09.004.
[19] M. Rajendran, K. Bakthavatchalam, and S. M. Leela Bharathi, “Review on the hybridized application of natural fiber in the development of geopolymer concrete,” Journal of Natural Fibers, vol. 20, no. 1, Apr. 2023, doi: 10.1080/15440478.2023.2178578.
[20] K. Korniejenko, E. Frączek, E. Pytlak, and M. Adamski, “Mechanical properties of geopolymer composites reinforced with natural fibers,” Procedia Engineering, vol. 151, pp. 388–393, 2016, doi: 10.1016/j.proeng.2016.07.395.
[21] M. Ali, A. Liu, H. Sou, and N. Chouw, “Mechanical and dynamic properties of coconut fibre reinforced concrete,” Construction and Building Materials, vol. 30, pp. 814–825, May 2012, doi: 10.1016/j.conbuildmat.2011.12.068.
[22] O. Onuaguluchi and N. Banthia, “Plant-based natural fibre reinforced cement composites: A review,” Cement and Concrete Composites, vol. 68, pp. 96–108, Apr. 2016, doi: 10.1016/j.cemconcomp.2016.02.014.
[23] R. D. Tolêdo Filho, K. Scrivener, G. L. England, and K. Ghavami, “Durability of alkali-sensitive sisal and coconut fibres in cement mortar composites,” Cement and Concrete Composites, vol. 22, no. 2, pp. 127–143, Apr. 2000, doi: 10.1016/S0958-9465(99)00039-6.
[24] H. Savastano, P. G. Warden, and R. S. P. Coutts, “Microstructure and mechanical properties of waste fibre–cement composites,” Cement and Concrete Composites, vol. 27, no. 5, pp. 583–592, May 2005, doi: 10.1016/j.cemconcomp.2004.09.009.
[25] K. Walbrück, F. Maeting, S. Witzleben, and D. Stephan, “Natural fiber-stabilized geopolymer foams—A review,” Materials, vol. 13, no. 14, p. 3198, Jul. 2020, doi: 10.3390/ma13143198.
[26] R. Phiri, S. M. Rangappa, S. Siengchin, and D. Marinkovic, “Agro-waste natural fiber sample preparation techniques for bio-composites development: Methodological insights,” Facta Universitatis, Series: Mechanical Engineering, vol. 21, no. 4, p. 631, Dec. 2023, doi: 10.22190/FUME230905046P.
[27] S. K. Palaniappan, M. K. Singh, S. M. Rangappa, and S. Siengchin, “Eco-friendly Biocomposites: A step towards achieving sustainable development goals,” Applied Science and Engineering Progress, vol. 17, no. 4, Feb. 2024, Art. no. 7373, doi: 10.14416/j.asep.2024.02.003.
[28] J. Wei and C. Meyer, “Degradation mechanisms of natural fiber in the matrix of cement composites,” Cement and Concrete Research, vol. 73, pp. 1–16, Jul. 2015, doi: 10.1016/j.cemconres.2015.02.019.
[29] A. M. M. Edeerozey, H. M. Akil, A. B. Azhar, and M. I. Z. Ariffin, “Chemical modification of kenaf fibers,” Materials Letters, vol. 61, no. 10, pp. 2023–2025, Apr. 2007, doi: 10.1016/j.matlet.2006.08.006.
[30] P. Sahu and M. Gupta, “A review on the properties of natural fibres and its bio-composites: Effect of alkali treatment,” Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications, vol. 234, no. 1, pp. 198–217, Jan. 2020, doi: 10.1177/1464420719875163.
[31] V. Lakshmi Narayana and L. Bhaskara Rao, “A brief review on the effect of alkali treatment on mechanical properties of various natural fiber reinforced polymer composites,” Materials Today Proceedings, vol. 44, pp. 1988–1994, 2021, doi: 10.1016/j.matpr.2020.12.117.
[32] L. Y. Mwaikambo and M. P. Ansell, “Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization,” Journal of Applied Polymer Science, vol. 84, no. 12, pp. 2222–2234, Jun. 2002, doi: 10.1002/app.10460.
[33] N. Reddy and Y. Yang, “Biofibers from agricultural byproducts for industrial applications,” Trends in Biotechnology, vol. 23, no. 1, pp. 22–27, Jan. 2005, doi: 10.1016/j.tibtech.2004.11.002.
[34] M. John and S. Thomas, “Biofibres and biocomposites,” Carbohydrate Polymers, vol. 71, no. 3, pp. 343–364, Feb. 2008, doi: 10.1016/j.carbpol.2007.05.040.
[35] N. Reddy and Y. Yang, “Biofibers from agricultural byproducts for industrial applications,” Trends in Biotechnology, vol. 23, no. 1, pp. 22–27, Jan. 2005, doi: 10.1016/j.tibtech.2004.11.002.
[36] A. Bledzki, “Composites reinforced with cellulose based fibres,” Progress in Polymer Science, vol. 24, no. 2, pp. 221–274, May 1999, doi: 10.1016/S0079-6700(98)00018-5.
[37] L. Yan, N. Chouw, and K. Jayaraman, “Flax fibre and its composites – A review,” Composite B Engineering, vol. 56, pp. 296–317, Jan. 2014, doi: 10.1016/j.compositesb.2013.08.014.
[38] A. K. Mohanty, M. Misra, and L. T. Drzal, “Surface modifications of natural fibers and performance of the resulting biocomposites: An overview,” Composite Interfaces, vol. 8, no. 5, pp. 313–343, Jan. 2001, doi: 10.1163/156855401753255422.
[39] S. İlkentapar and A. Özsoy, “Investigation of mechanical properties, high-temperature resistance and microstructural properties of diatomite-containing geopolymer mortars,” Arabian Journal of Geosciences, vol. 15, no. 6, p. 502, Mar. 2022, doi: 10.1007/s12517-022-09824-7.
[40] R. C. Abruzzi, B. A. Dedavid, and M. J. R. Pires, “Characterization of tin dioxide nanoparticles synthesized by oxidation,” Cerâmica, vol. 61, no. 359, pp. 328–333, Sep. 2015, doi: 10.1590/0366-69132015613591919.
[41] J. J. Kipsanai, P. M. Wambua, S. S. Namango, and S. Amziane, “A review on the incorporation of diatomaceous earth as a geopolymer-based concrete building resource,” Materials, vol. 15, no. 20, p. 7130, Oct. 2022, doi: 10.3390/ma15207130.
[42] D. M. González-García, L. Téllez-Jurado, F. J. Jiménez-Álvarez, and H. Balmori-Ramírez, “Structural study of geopolymers obtained from alkali-activated natural pozzolan feldspars,” Ceramics International, vol. 43, no. 2, pp. 2606–2613, Feb. 2017, doi: 10.1016/j.ceramint.2016.11.070.
[43] N. T. Abdel-Ghani, H. A. Elsayed, and S. AbdelMoied, “Geopolymer synthesis by the alkali-activation of blastfurnace steel slag and its fire-resistance,” HBRC Journal, vol. 14, no. 2, pp. 159–164, Aug. 2018, doi: 10.1016/j.hbrcj.2016.06.001.
[44] I. Suyambulingam, S. M. Rangappa, and S. Siengchin, “Advanced materials and technologies for engineering applications,” Applied Science and Engineering Progress, vol. 16, no. 3, Jan. 2023, Art. no. 6760, doi: 10.14416/j.asep.2023.01.008.
[45] B. Lavanya, P. D. Kuriya, S. Suganesh, R. Indrajith, and R. B. Chokkalingam, “Properties of geopolymer bricks made with flyash and GGBS,” IOP Conference Series Material Science Engineering, vol. 872, no. 1, Jun. 2020, Art. no. 012141, doi: 10.1088/1757-899X/872/1/012141.
[46] A. Saludung, Y. Ogawa, and K. Kawai, “Microstructure and mechanical properties of FA/GGBS-based geopolymer,” MATEC Web of Conferences, vol. 195, Aug. 2018, Art. no. 01013, doi: 10.1051/matecconf/201819501013.
[47] H. El-Hassan and N. Ismail, “Effect of process parameters on the performance of fly ash/GGBS blended geopolymer composites,” Journal of Sustainable Cement Based Materials, vol. 7, no. 2, pp. 122–140, Mar. 2018, doi: 10.1080/21650373.2017.1411296.
[48] Rao, G. Srinivasa, and B. Sarath Chandra Kumar, “Experimental investigation of GGBS based geopolymer concrete with steel fibers,” International Conference on Advances in Civil Engineering (ICACE-2019), vol. 21, p. 23, 2019.
[49] N. Degirmenci and A. Yilmaz, “Use of diatomite as partial replacement for Portland cement in cement mortars,” Construction and Building Materials, vol. 23, no. 1, pp. 284–288, Jan. 2009, doi: 10.1016/j.conbuildmat.2007.12.008.
[50] C. Li, G. Li, D. Chen, K. Gao, Y. Cao, Y. Zhou, Y. Mao, S. Fan, L. Tang, and H. Jia, “The effects of diatomite as an additive on the macroscopic properties and microstructure of concrete,” Materials, vol. 16, no. 5, p. 1833, Feb. 2023, doi: 10.3390/ma16051833.
[51] S. S. Ibrahim, “Diatomite ores: Origin, characterization and applications,” Journal of International Environmental Application & Science, vol. 7, no. 1, pp. 191–199, 2012.
[52] E. E. ElSayed, “Natural diatomite as an effective adsorbent for heavy metals in water and wastewater treatment (a batch study),” Water Science, vol. 32, no. 1, pp. 32–43, Apr. 2018, doi: 10.1016/j.wsj.2018.02.001.
[53] P. Zhao, N. Sun, X. Liu, Z. Chen, Y. Li, T. Hu, X. Xue, S. Zhang, G. Sheetah, and Y. Xie, “Diatomite-based adsorbent decorated with Fe3O4 nanoparticles for the removal of hazardous metal ions,” ACS Applied Nano Materials, vol. 6, no. 10, pp. 8958–8970, May 2023, doi: 10.1021/acsanm.3c01577.
[54] O. Şan and A. İmaretli, “Preparation and filtration testing of diatomite filtering layer by acid leaching,” Ceramics International, vol. 37, no. 1, pp. 73–78, Jan. 2011, doi: 10.1016/j.ceramint.2010.08.030.
[55] V. Bhardwaj and M. J. Mirliss, “Diatomaceous earth filtration for drinking water,” National Drinking Water Clearing House Fact Sheet, vol. 1, no. 4, 2001.
[56] C. Bagci, G. P. Kutyla, and W. M. Kriven, “Fully reacted high strength geopolymer made with diatomite as a fumed silica alternative,” Ceramics International, vol. 43, no. 17, pp. 14784–14790, Dec. 2017, doi: 10.1016/j.ceramint.2017.07.222.
[57] Standard Test Method for Tensile Strength and Young’s Modulus of Fibers, ASTM-C1557-03, 2003.
[58] L. Segal, J. J. Creely, A. E. Martin, and C. M. Conrad, “An empirical method for estimating the degree of crystallinity of native cellulose using the x-ray diffractometer,” Textile Research Journal, vol. 29, no. 10, pp. 786–794, Oct. 1959, doi: 10.1177/004051755902901003.
[59] Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM C1437-01, 2001
[60] Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens)1, ASTM C109/C109M-02, 2002.
[61] Standard Test Method for Flexural Strength of Hydraulic-Cement Mortars1, ASTM C348-02, 2002.
[62] Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM C496/C496M-11, 2011.
[63] Standard Test Method for Pulse Velocity Through Concrete 1, ASTM C597-16, 2016.
[64] Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM C642-13, 2013.
[65] Standard Test Methods for Determining the Chemical Resistance of Concrete Products to Acid Attack 1, ASTM C1898-20, 2020.
[66] Standard Test Methods for Chemical Resistance of Mortars, Grouts, and Monolithic Surfacings and Polymer Concretes, ASTM C267-01, 2001.
[67] T. Yimer and A. Gebre, “Effect of fiber treatments on the mechanical properties of sisal fiber-reinforced concrete composites,” Advances in Civil Engineering, vol. 2023, pp. 1–15, Apr. 2023, doi: 10.1155/2023/2293857.
[68] L. Y. Mwaikambo and M. P. Ansell, “Mechanical properties of alkali treated plant fibres and their potential as reinforcement materials. I. hemp fibres,” Journal of Materials Science, vol. 41, no. 8, pp. 2483–2496, Apr. 2006, doi: 10.1007/s10853-006-5098-x.
[69] A. Oushabi, S. Sair, F. O. Hassani, Y. Abboud, O. Tanane, and A. E. Bouari, “The effect of alkali treatment on mechanical, morphological and thermal properties of date palm fibers (DPFs): Study of the interface of DPF–Polyurethane composite,” South African Journal of Chemical Engineering, vol. 23, pp. 116–123, Jun. 2017, doi: 10.1016/j.sajce.2017.04.005.
[70] F. J. Kolpak, M. Weih, and J. Blackwell, “Mercerization of cellulose: 1. Determination of the structure of Mercerized cotton,” Polymer (Guildf), vol. 19, no. 2, pp. 123–131, Feb. 1978, doi: 10.1016/0032-3861(78)90027-7.
[71] P. Krishnaiah, C. T. Ratnam, and S. Manickam, “Enhancements in crystallinity, thermal stability, tensile modulus and strength of sisal fibres and their PP composites induced by the synergistic effects of alkali and high intensity ultrasound (HIU) treatments,” Ultrasonics Sonochemistry, vol. 34, pp. 729–742, Jan. 2017, doi: 10.1016/j.ultsonch.2016.07.008.
[72] M. Benzerzour, N. Sebaibi, N. E. Abriak, and C. Binetruy, “Waste fibre–cement matrix bond characteristics improved by using silane-treated fibres,” Construction and Building Materials, vol. 37, pp. 1–6, Dec. 2012, doi: 10.1016/j.conbuildmat.2012.07.024.
[73] P. Lertwattanaruk and A. Suntijitto, “Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications,” Construction and Building Materials, vol. 94, pp. 664–669, Sep. 2015, doi: 10.1016/j.conbuildmat.2015.07.154.
[74] Z. Deng, Z. Yang, J. Bian, X. Pan, G. Wu, F. Guo, R. Fu, H. Yan, Z. Deng, and S. Chen, “Engineering properties of PVA fibre-reinforced geopolymer mortar containing waste oyster shells,” Materials, vol. 15, no. 19, p. 7013, Oct. 2022, doi: 10.3390/ma15197013.
[75] T. Alomayri, F. U. A. Shaikh, and I. M. Low, “Characterisation of cotton fibre-reinforced geopolymer composites,” Composites Part B: Engineering, vol. 50, pp. 1–6, Jul. 2013, doi: 10.1016/j.compositesb.2013.01.013.
[76] M. Y. Hashim, A. M. Amin, O. M. F. Marwah, M. H. Othman, M. R. M. Yunus, and N. Chuan Huat, “The effect of alkali treatment under various conditions on physical properties of kenaf fiber,” Journal of Physics Conference Series, vol. 914, Oct. 2017, Art. no. 012030, doi: 10.1088/1742-6596/914/1/012030.
[77] J. Khedari, B. Suttisonk, N. Pratinthong, and J. Hirunlabh, “New lightweight composite construction materials with low thermal conductivity,” Cement and Concrete Composites, vol. 23, no. 1, pp. 65–70, Feb. 2001, doi: 10.1016/S0958-9465(00)00072-X.
[78] B. Muñoz-Sánchez, M. J. Arévalo-Caballero, and M. C. Pacheco-Menor, “Influence of acetic acid and calcium hydroxide treatments of rubber waste on the properties of rubberized mortars,” Materials and Structures, vol. 50, no. 1, p. 75, Feb. 2017, doi: 10.1617/s11527-016-0912-7.
[79] R. Ghosh, S. P. Sagar, A. Kumar, S. K. Gupta, and S. Kumar, “Estimation of geopolymer concrete strength from ultrasonic pulse velocity (UPV) using high power pulser,” Journal of Building Engineering, vol. 16, pp. 39–44, Mar. 2018, doi: 10.1016/j.jobe.2017.12.009.
[80] S. Shankar and H. R. Joshi, “Comparison of concrete properties determined by destructive and non-destructive tests,” Journal of the Institute of Engineering, vol. 10, no. 1, pp. 130–139, Aug. 2014, doi: 10.3126/jie.v10i1.10889.
[81] D. M. Ali, S. C. Chin, C. Bao, and J. Gimbun, “Enhancement of reinforced concrete durability and performance by bamboo and basalt fibres,” Physics and Chemistry of the Earth, Parts A/B/C, vol. 134, Jun. 2024, Art. no. 103572, doi: 10.1016/j.pce.2024.103572.
[82] S. Balachandran, J. Sudhakumar, B. S. Thomas, P. Sankaranarayanan, S. T. Vasu, and A. C. Ravikumar, “Mechanical properties of bacterial cement mortar integrating natural banana fibres,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. 7549, doi: 10.14416/j.asep.2024.09.002.
DOI: 10.14416/j.asep.2025.07.002
Refbacks
- There are currently no refbacks.