Page Header

Characterization, Compressive Strength and Output Voltage Properties of Silica/Barium Titanate Nanocomposite for Piezoelectric Applications

Muhammad Sadat Hamzah, Muhammad Syaiful Fadly, Muhammad Waziz Wildan, Kusmono Kusmono, Edi Suharyadi

Abstract


The influence of nano-sized barium titanate addition on the compressive strength and output voltage of silica/barium titanate nanocomposites was investigated. Nano silica powder, synthesized from silica sand via an alkaline fusion method assisted by 200 Hz speaker membrane vibration, was combined with nano barium titanate using the solid-state method at 10, 20, 30, and 40 wt% variations. Samples were uniaxially compacted at 75 MPa and sintered at 1390 °C for 2 hours under atmospheric conditions. The highest bulk density (2.72 g/cm³) and compressive strength (37.01 MPa) were achieved at 10 wt% barium titanates. XRD analysis revealed quartz, tridymite, and cristobalite phases and the emergence of fresnoite (Ba₂TiSi₂O₈) and BaTiSiO₅ phases at higher BT contents. The maximum output voltage (5.51 mV) was obtained at 40 wt% barium titanate, indicating the material's potential for piezoelectric applications.

Keywords



[1]    D.-J. Shin, S.-J. Jeong, C.-E. Seo, K.-H. Cho, and J.-H. Koh, “Multi-layered piezoelectric energy harvesters based on PZT ceramic actuators,” Ceramics International, vol. 41, no. 1, pp. 686–690, 2015, doi: 10.1016/j.ceramint.2015.03.180.

[2]    C. Zhao, Q. Zhang, W. Zhang, X. Du, Y. Zhang, S. Gong, K. Ren, Q. Sun, and Z. L. Wang, “Hybrid piezo/triboelectric nanogenerator for highly efficient and stable rotation energy harvesting,” Nano Energy, vol. 57, no. 3, pp. 440–449, 2019, doi: 10.1016/j.nanoen.2018.12.062.

[3]    G. Tian, W. Deng, Y. Gao, D. Xiong, C. Yan, X. He, T. Yang, L. Jin, X. Chu, and H. Zhang, “Rich lamellar crystal baklava-structured PZT/PVDF piezoelectric sensor toward individual table tennis training,” Nano Energy, vol. 59, no. 5, pp. 574–581, 2019, doi: 10.1016/j.nanoen.2019.03.013.

[4]    S. Sriphan, T. Charoonsuk, T. Maluangnont, and N. Vittayakorn, “Piezoelectric energy harvesting for low-power smart electronics,” Encyclopedia of Materials: Electronics, vol. 1, no. 1, pp. 369–404, 2023, doi: 10.1016/B978-0-12-819728-8.00050-4.

[5]    S. B. Nagaraju, M. Puttegowda, M. K. Somashekara, T. G. T. Girijappa, P. D. Govindaswamy, and K. Sathyanarayana, “Advancing the performance of ceramic-reinforced Aluminum hybrid composites: A comprehensive review and future perspectives,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, Art. no. 7034, doi: 10.14416/ j.asep.2023.10.001.

[6]    I. V. Schweigert, K. E. J. Lehtinen, M. J. Carrier, and M. R. Zachariah, “Structure and properties of silica nanoclusters at high temperatures,” Physical Review B, vol. 65, no. 23, 2002, Art. no. 235410, doi: 10.1103/PhysRevB.65.235410.

[7]    M. S. Hamzah, M. W. Wildan, Kusmono, and E. Suharyadi, “Effect of sintering temperature on physical, mechanical, and electrical properties of nano silica particles synthesized from Indonesia local sand for piezoelectric application,” Journal of Asian Ceramic Societies, vol. 11, no. 1, pp. 178–187, 2023, doi: 10.1080/21870764.2023. 2173851.

[8]    M. Ma, H. Li, Y. Xiong, and F. Dong, “Rational design, synthesis, and application of silica/graphene-based nanocomposite: A review,” Materials & Design, vol. 198, no. 1, 2021, Art. no. 109367, doi: 10.1016/j.matdes. 2020.109367.

[9]    S. Ahmad, O. S. B. Al-Amoudi, S. M. S. Khan, and M. Maslehuddin, “Effect of silica fume inclusion on the strength, shrinkage and durability characteristics of natural pozzolan-based cement concrete,” Case Studies in Construction Materials, vol. 17, no. 2, p. 1255, 2022, doi: 10.1016/j.cscm.2022.e01255.

[10] M. K. Yadav, V. Pandey, K. Mohanta, and V. K. Singh, “A low-cost approach to develop silica doped Tricalcium Phosphate (TCP) scaffold by valorizing animal bone waste and rice husk for tissue engineering applications,” Ceramics International, vol. 48, no. 7, pp. 25335–25345, 2022, doi: 10.1016/j.ceramint.2022.05.207.

[11] Q. Lei, J. Guo, A. Noureddine, A. Wang, S. Wuttke, C. J. Brinker, and W. Zhu, “Sol–gel‐based advanced porous silica materials for biomedical applications,” Advanced Functional Materials, vol. 30, no. 41, 2020, Art. no. 1909539, doi: 10.1002/adfm.201909539.

[12] G. J. Owens, R. K. Singh, F. Foroutan, M. Alqaysi, C.-M. Han, C. Mahapatra, H.-W. Kim, and J. C. Knowles, “Sol–gel based materials for biomedical applications,” Progress in Materials Science, vol. 77, no. 4, pp. 1–79, 2016, doi:  10.1016/j.pmatsci.2015.12.001.

[13] M.-R. Buga, A. A. Spinu-Zaulet, C. G. Ungureanu, R.-A. Mitran, E. Vasile, M. Florea, and F. Neatu, “Carbon-coated SiO2 composites as promising anode material for Li-ion batteries,” Molecules, vol. 26, no. 15, p. 4531, 2021, doi: 10.3390/molecules26154531.

[14] B. Huang, B. Chu, T. Huang, and A. Yu, “Nitrogen-doped carbon-coating disproportionated SiO materials as long cycling stable anode for lithium ion batteries,” Molecules, vol. 26, no. 6, p. 1536, 2021, doi: 10.3390/molecules26061536.

[15] T. Thirugnanasambandan, S. M. K. Thiagamani, S. Siengchin, and S. M. Rangappa, “Fabrication and characterization of an active nanocomposite film based on polystyrene/thyme/nano ZnO for food packaging,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, Art. no. 6440, doi: 10.14416/j.asep.2022.11.003.

[16]  J. S. Park and Y. H. Han, “Nano size BaTiO3 powder coated with silica,” Ceramics International, vol. 31, no. 6, pp. 777–782, 2005, doi: 10.1016/j.ceramint.2004.09.003.

[17] Z.-J. Shen, S. Esnault, A. Schinzel, C. Borner, and J. S. Malter, “The peptidyl-prolyl isomerase Pin1 facilitates cytokine-induced survival of eosinophils by suppressing Bax activation,” Nature Immunology, vol. 10, no. 3, pp. 257–265, 2009, doi: 10.1038/ni.1697.

[18] D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, and M. Liu, “Strategies to achieve high performance piezoelectric nanogenerators,” Nano Energy, vol. 55, no. 1, pp. 288–304, 2019, doi: 10.1016/ j.nanoen.2018.10.053.

[19]  P. Chomyen, R. Potong, R. Rianyoi, A. Ngamjarurojana, P. Chindaprasirt, and A. Chaipanich, “Microstructure, dielectric and piezoelectric properties of 0–3 lead free barium zirconate titanate ceramic-Portland fly ash cement composites,” Ceramics International, vol. 44, no. 1, pp. 76–82, 2018, doi: 10.1016/j. ceramint.2017.09.112.

[20] Y. Wu, J. Zhang, Y. Tan, and P. Zheng, “Notable grain-size dependence of converse piezoelectric effect in BaTiO3 ceramics,” Ceramics International, vol. 42, no. 8, pp. 9815–9820, 2016, doi: 10.1016/j.ceramint.2016.03.075.

[21] D. E. Rase and R. Roy, “Phase equilibria in the system BaTiO3‐SiO2,” Journal of the American Ceramic Society, vol. 38, no. 11, pp. 389–395, 1955, doi: 10.1111/j.1151-2916.1955.tb14562.x.

[22] Y. Lee, C. Lin, W. Lu, W. Chen, and W. Lee, “Influence of SiO2 addition on the dielectric properties and microstructure of (Ba0.96Ca0. 04)(Ti0.85Zr0.15) O3 ceramics,” International Journal of Applied Ceramic Technology, vol. 6, no. 6, pp. 692–701, 2009, doi: 10.1111/j.1744-7402.2009.02379.x.

[23] M. S. Hamzah, M. W. Wildan, Kusmono, and E. Suharyadi, “Study of the synthesis of nanosilica particles from silica sand Poso Regency for the development of piezoelectric materials,” Ph.D. dissertation, Department of Mechanical and Industrial Engineering, Universitas Gadjah Mada, Indonesia, 2023.

[24] A. S. Morris and R. Langari, Measurement and Instrumentation Theory and Application. New York: Academic Press, pp. 1–703, 2016. doi:10.1016/C2013-0-15387-1

[25]  Y. Slimani, A. Selmi, E. Hannachi, M. A. Almessiere, G. AlFalah, L. F. AlOusi, G. Yasin, and M. Iqbal, “Study on the addition of SiO2 nanowires to BaTiO3: Structure, morphology, electrical and dielectric properties,” Journal of Physics and Chemistry of Solids, vol. 156, no. 9, 2021, Art. no. 110183, doi: 10.1016/j.jpcs.2021. 110183.

[26] W. Zheng, J. M. Wu, S. Chen, K. B. Yu, J. Zhang, and Y. S. Shi, “Improved mechanical properties of SiC fiber reinforced silica-based ceramic cores fabricated by stereolithography,” Journal of Materials Science & Technology, vol. 116, no. 7, pp. 161–168, 2022, doi: 10.1016/j. jmst.2021.12.012.

[27] S. Hu, C. Luo, P. Li, J. Hu, G. Li, H. Jiang, and W. Zhang, “Effect of sintered temperature on structural and piezoelectric properties of barium titanate ceramic prepared by nano-scale precursors,” Journal of Materials Science: Materials in Electronics, vol. 28, no. 7, pp. 9322–9327, 2017, doi: 10.1007/s10854-017-6670-7.

[28] F. Mokhtari, B. Azimi, M. Salehi, S. Hashemikia, and S. Danti, “Recent advances of polymer-based piezoelectric composites for biomedical applications,” Journal of the Mechanical Behavior of Biomedical Materials, vol. 122, no. 10, 2021, Art. no. 104669, doi: 10.1016/j.jmbbm.2021.104669.

[29]  S. Cao, B. Jiang, Y. Zheng, X. Tu, K. Xiong, P. Gao, and E. Shi, “The growth and thermal, electrical properties characterization of Ba2TiSi2O8 piezoelectric crystal,” Journal of Crystal Growth, vol. 451, no. 10, pp. 207–213, 2016. doi: 10.1016/j.jcrysgro.2016.07.014.

[30] F. Qi, N. Chen, and Q. Wang, “Preparation of PA11/BaTiO3 nanocomposite powders with improved processability, dielectric and piezoelectric properties for use in selective laser sintering,” Materials & Design, vol. 131, no. 10, pp. 135–143, 2017, doi: 10.1016/j.matdes.2017. 06.012.

[31] A. A. Moosa and B. F. Saddam, “Synthesis and characterization of nanosilica from rice husk with applications to polymer composites,” American Journal of Materials Science, vol. 7, no. 6, pp. 223–231, 2017, doi: 10.1016/j.cscee. 2025.101145.

[32] K. F. Jusnes, M. Tangstad, and E. Ringdalen, “Phase transformations from quartz to cristobalite,” in Extraction 2018: Proceedings of the First Global Conference on Extractive Metallurgy, pp. 717–727, 2018. doi: 10.1007/ 978-3-319-95022-8_56.

Full Text: PDF

DOI: 10.14416/j.asep.2025.06.008

Refbacks

  • There are currently no refbacks.