Artificial Intelligence Meets Catalysis: A New Approach to Heavy Diesel Desulfurization Using Trimetallic Activated Carbon Catalyst in Central Oscillating Reactor
Abstract
Keywords
[1] X. B. Lim and W.-J. Ong, “A current overview of the oxidative desulfurization of fuels utilizing heat and solar light: From materials design to catalysis for clean energy,” Nanoscale Horizons, vol. 6, no. 8, pp. 588–633, 2021, doi: 10.1039/ D1NH00127B.
[2] A. E. Mohammed, W. T. Mohammed, and S. A. Gheni, “Environmental benefits of agricultural waste-derived catalysts in diesel desulfurization: A review,” Cleaner Materials, vol. 13, 2024, Art. no. 1002622024, doi: 10.1016/j.clema. 2024.100262.
[3] J. I. Humadi, A. E. Mohammed, L. A. Khamees, S. A. Jafar, and M. A. Abdulqader, “Oil upgrading via desulfurization process using a new composite nano-alkaline-iron oxide over titanium oxide catalysts,” Energy & Environment, 2025 doi: 10.1177/0958305X251344235.
[4] R. J. P. Latiza and R. V. Rubi, “Circular economy integration in 1G+ 2G sugarcane bioethanol production: Application of carbon capture, utilization and storage, closed-loop systems, and waste valorization for sustainability,” Applied Science and Engineering Progress, vol. 18, no. 1, 2025, Art. no. 7448, doi: 10.14416/ j.asep.2024.07.005.
[5] Z. Arifin and M. Setiyo, “High yield oil from catalytic pyrolysis of polyethylene terephthalate using natural zeolite: A review,” Applied Science and Engineering Progress, vol. 18, no. 3, 2025, Art. no. 7673, doi: 10.14416/j.asep.2025. 01.001.
[6] M. Ahmadian and M. Anbia, “Oxidative desulfurization of liquid fuels using polyoxometalate-based catalysts: A review,” Energy & Fuels, vol. 35, no. 13, p. 10347–10373, 2021, doi: 10.1021/acs.energyfuels. 1c00862.
[7] J. I. Humadi and W. T. Mohammed, “Fast, ultradeep, and continuous desulfurization of heavy gasoil in novel oscillatory basket central baffled reactor using MnO2-incorparted Fe2O3-supported activated carbon catalyst,” Fuel, vol. 400, p. 135716, 2025, doi: 10.1016/j.fuel.2025. 135716.
[8] R. El-Araby, “Biofuel production: Exploring renewable energy solutions for a greener future,” Biotechnology for Biofuels and Bioproducts, vol. 17, no. 1, p. 129, 2024, doi: 10.1186/s13068-024-02571-9.
[9] O. Awogbemi and D. A. Desai, “Recent advances in purification technologies for biodiesel-derived crude glycerol,” International Journal of Ambient Energy, vol. 46, no. 1, p. 2533373, 2025, doi: 10.1080/01430750.2025. 2533373.
[10] D. Neupane, “Biofuels from renewable sources, a potential option for biodiesel production,” Bioengineering, vol. 10, no. 1, pp. 29, 2022, doi: 10.3390/bioengineering10010029.
[11] A. Qasim, H. H. Alwan, N. Qasim, J. I. Humadi, and S. A. Hatem, “Optimizing naphtha blending at Al-Diwaniyah refinery for enhanced gasoline production: improving octane number and minimizing sulfur content,” Chemical Papers, vol. 79, pp. 5497–5515, 2025, doi: 10.1007/s11696-025-04141-1.
[12] A.-H.A. Mohammed and A. S. Abbas, “The effect of asphaltenes removal on the kinetics of Iraqi reduced crude oil hydrotreating,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 2, no. 1, pp. 16–24, 2001, doi: 10.31699/IJCPE.2001.1.3.
[13] A. Qasim and H. H. Alwan, “Adsorptive desulfurization of Iraqi light naphtha using calcite and modified calcite,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 25, no. 1, pp. 83–93, 2024, doi: 10.31699/IJCPE. 2024.1.8.
[14] Q. A. Mahmood, J. I. Humadi, R. J. Algawi, A. T. Nawaf, and I. A. Ahmed, “Adsorption desulfurization of simulated diesel fuel using graphene oxide” Chemistry and Chemical Technology, vol. 18, pp. 436–441, 2024, doi: 10.23939/chcht18.03.436.
[15] N. M. Ali, E. M. Majeed, G. H. A. Razzaq, J.I. Humadi, and M. A. Ahmed, “Improvement of extractive desulfurization for Iraqi refinery atmospheric residual,” Petroleum Science and Technology, vol. 43, no. 3, pp. 305–318, 2025, doi: 10.1080/10916466.2023.2292784.
[16] F. Almenglo, J. González-Cortés, M. Ramírez, and D. Cantero, “Recent advances in biological technologies for anoxic biogas desulfurization,” Chemosphere, vol. 321, 138084, pp. 2023, doi: org/10.1016/j.chemosphere.2023.138084.
[17] J. I. Humadi, L. I. Saeed, G. H. A. Razzaq, M. A. Habila, and R. Haldhar, “Green diesel desulfurization process in a basket reactor over eco-friendly tin oxide–ZSM-5 zeolite,” Petroleum Chemistry, vol. 65, no. 2, pp. 178–189, 2025, doi: 10.1134/S0965544124601996.
[18] G. Ye, H. Wang, X. Zeng, L. Wang, and J. Wang, “Defect-rich bimetallic UiO-66 (Hf-Zr): solvent-free rapid synthesis and robust ambient-temperature oxidative desulfurization performance,” Applied Catalysis B: Environmental, vol. 299, p. 120659, 2021, doi: 10.1016/j.apcatb.2021. 120659.
[19] J. I. Humadi and W. T. Mohammed, “A comprehensive review on developing of the utilized reactor design for oxidative desulfurization technology: Oscillatory baffled reactor: Part I,” Johnson Matthey Technology Review, vol. 69, no. 4, pp. 616–627, 2025, doi: 10.1595/205651325X17458327898766.
[20] N. M. Abdullah, H. Q. Hussien, and R. R. Jalil, “Synergistic influence of non-thermal plasma and hydrogen peroxide on oxidative desulfurization (ODS) of model fuel,” Baghdad Science Journal, vol. 21, no. 10, p. 9, 2024, doi: 10.21123/bsj.2024.9016.
[21] A. T. Nawaf, J. I. Humadi, A. A. Hassan, M. A. Habila, and R. Haldhar, “Improving of fuel quality and environment using new synthetic (Mn₃O₄/AC-nano-particles) for oxidative desulfurization using digital baffle batch reactor,” South African Journal of Chemical Engineering, vol. 52, pp. 8–19, 2025, doi: 10.1016/j.sajce.2025.01.003.
[22] F. M. Nejati, S. Shahhosseini, and M. Rezaee, “Cobalt-based sandwich-type polyoxometalate supported on amino-silane decorated magnetic graphene oxide: A recoverable catalyst for extractive-catalytic oxidative desulfurization of model oil,” Journal of Environmental Chemical Engineering, vol. 10, no. 3, p. 107949, 2022, doi: 10.1016/j.jece.2022.107949.
[23] J. I. Humadi, S. A. Gheni, S. M. Ahmed, G. H. Abdullah, A. N. Phan, and A. P. Harvey, “Fast, non-extractive, and ultradeep desulfurization of diesel in an oscillatory baffled reactor,” Process Safety and Environmental Protection, vol. 152, pp. 178–187, 2021, doi: 10.1016/j.psep.2021. 05.028.
[24] J. Xiong, H. Huang, M. Zhang, P. Song, H. Li, and J. Di, “Incorporating carbon quantum dots into phosphotungstic acid ionic liquid materials for enhanced catalytic oxidative desulfurization,” Fuel, vol. 365, p. 131168, 2024, doi: 10.1016/ j.fuel.2024.131168.
[25] N. A. Basha, T. Rathinavel, and H. Sridharan, “Activated carbon from coconut shell: synthesis and its commercial applications—a recent review,” Applied Science and Engineering Progress, vol. 16, no. 2, p. 6152, 2023, doi: 10.14416/j.asep.2022.07.001.
[26] J. I. Humadi, A. T. Nawaf, L. I. Saeed, and Q. A. Mahmood, “Enhancing the synthesis of porous activated carbon for environmentally friendly sulfur removal from kerosene fuel,” Solid Fuel Chemistry, vol. 58, no. 6, pp. 500–507, 2024, doi: 10.3103/S0361521924700411.
[27] A. E. Mohammed, W. T. Mohammed, and S. A. Gheni, “Scale-up of oxidative desulfurization for sour diesel fuel: Modeling, simulation, and reactor design using Fe/AC catalyst,” Case Studies in Chemical and Environmental Engineering, vol. 11, p. 101024, 2025, doi: 10.1016/j.cscee.2024.101024.
[28] M. S. Salman, S. A. Jafar, G. H. Abdullah, J. I. Humadi, M. A. Ahmed, and A. M. Mohammed, “Development of an electrochemical reactor with rotating anode for fast and ultra-deep catalytic desulfurization of diesel: Experimental and modeling,” Chemical Engineering Communications, vol. 211, no. 10, pp. 1508–1523, 2024, doi: 10.1080/00986445.2024.2358369.
[29] J. I. Humadi, Y. S. Issa, D. Y. Aqar, M. A. Ahmed, H. H. A. Alak, and I. M. Mujtaba, “Evaluation of the performance of tin (IV) oxide (SnO₂) in the removal of sulfur compounds via oxidative-extractive desulfurization process for production of eco-friendly fuel,” International Journal of Chemical Reactor Engineering, vol. 21, no. 6, pp. 727–741, 2023, doi: 10.1515/ijcre-2022-0046.
[30] Q. A. Mahmood, B. A. Abdulmajeed, and R. Haldhar, “Oxidative desulfurization of simulated diesel fuel by synthesized tin oxide nanocatalysts supported on reduced graphene oxide,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 24, no. 4, pp. 83–90, 2023, doi: 10.31699/IJCPE.2023.4.8.
[31] B. B. Jima and N. S. Majeed, “Oxidative desulfurization of heavy naphtha improved by ultrasound waves,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 21, no. 1, pp. 9–14, 2020, doi: 10.31699/IJCPE.2020.1.2.
[32] J. I. Humadi, S. A. Gheni, S. M. Ahmed, and A. Harvey, “Dimensionless evaluation and kinetics of rapid and ultradeep desulfurization of diesel fuel in an oscillatory baffled reactor,” RSC Advances, vol. 12, no. 23, pp. 14385–14396, 2022, doi: 10.1039/D2RA01663J.
[33] M. Avila, B. Kawas, D. F. Fletcher, M. Poux, C. Xuereb, and J. Aubin, “Design, performance characterization and applications of continuous oscillatory baffled reactors,” Chemical Engineering and Processing: Process Intensification, vol. 180, p. 108718, 2022, doi: 10.1016/j.cep.2021.108718.
[34] A. T. Nawaf and B. A. A. Majeed, “Production of eco-friendly fuel: an oscillatory baffled reactor for enhanced oxidative desulfurization of real diesel fuel using a nanocatalyst,” Clean Technologies and Environmental Policy, pp. 1–21, 2025, doi: 10.1007/s10098-025-03181-1.
[35] A. T. Nawaf, J. I. Humadi, A. T. Jarullah, M. A. Ahmed, S. A. Hameed, and I. M. Mujtaba, “Design of nano-catalyst for removal of phenolic compounds from wastewater by oxidation using modified digital basket baffle batch reactor: Experiments and modeling,” Processes, vol. 11, no. 7, p. 1990, 2023, doi: 10.3390/pr11071990.
[36] J. A. Jones, “Deep desulfurization of diesel fuel using a single phase photochemical microreactor,” 2010. [Online]. Available: http://hdl.handle.net/ 1957/18974
[37] M. G. T. Alcaraz, A. E. S. Choi, N. P. Dugos, and M.-W. Wan, “A review on the adsorptive performance of bentonite on sulfur compounds,” Chemical Engineering Transactions, vol. 103, pp. 553–558, 2023, doi: 10.3303/CET23103093.
[38] X. Zhu, M. Khosravi, B. Vaferi, M. N. Amar, M. A. Ghriga, and A. H. Mohammed, “Application of machine learning methods for estimating and comparing the sulfur dioxide absorption capacity of a variety of deep eutectic solvents,” Journal of Cleaner Production, vol. 363, p. 132465, 2022, doi: 10.1016/j.jclepro. 2022.132465.
[39] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, pp. 273–297, 1995, doi: 10.1007/BF00994018.
[40] V. Vapnik, The Nature of Statistical Learning Theory. Germany: Springer Science & Business Media, 2013, doi: 10.1007/978-1-4757-2440-0.
[41] K. Lettat, E. Jolimaitre, M. Tayakout, and D. Tondeur, “Influence of slow diffusing species on mixture diffusion of hexane isomers in silicalite: characterization by a new cyclic method,” AIChE Journal, vol. 58, no. 5, pp. 1447–1455, 2012, doi: 10.1002/aic.12679.
[42] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed., New York: Springer, 2009, doi: 10.1007/978-0-387-84858-7.
[43] C. M. Bishop and N. M. Nasrabadi, Pattern Recognition and Machine Learning, New York: Springer, vol. 4, no. 4, p. 738, 2006, doi: 10.1007/978-0-387-45528-0.
[44] M. Mowbray, M. Vallerio, C. Perez-Galvan, D. Zhang, A. D. R. Chanona, and F. J. Navarro-Brull, “Industrial data science – A review of machine learning applications for chemical and process industries,” Reaction Chemistry & Engineering, vol. 7, no. 7, pp. 1471–1509, 2022, doi: 10.1039/D1RE00541C.
[45] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, vol. 20, no. 3, pp. 273–297, 1995, doi: 10.1007/BF00994018.
[46] J. Platt, “Sequential minimal optimization: A fast algorithm for training support vector machines,” Microsoft, 1998.
[47] A. Ben-Hur and J. Weston, “A user’s guide to support vector machines,” in Data Mining Techniques for the Life Sciences, Methods in Molecular Biology, O. Carugo and F. Eisenhaber, Eds., vol. 609, NJ: Humana Press, 2010, doi: 10.1007/978-1-60327-241-4_13.
[48] E. Meez, A. K. Tolkou, D. A. Giannakoudakis, I. A. Katsoyiannis, and G. Z. Kyzas, “Activated carbons for arsenic removal from natural waters and wastewaters: A review,” Water, vol. 13, no. 21, p. 2982, 2021, doi: 10.3390/w13212982.
[49] C. Y. Yin, M. K. Aroua, and W. M. A. W. Daud, “Review of modifications of activated carbon for enhancing contaminant uptakes from aqueous solutions,” Separation and Purification Technology, vol. 52, no. 3, pp. 403–415, 2007, doi: 10.1016/j.seppur.2006.06.009.
[50] L. Pereira, R. Pereira, M. Pereira, F. Van der Zee, F. Cervantes, and M. Alves, “Thermal modification of activated carbon surface chemistry improves its capacity as redox mediator for azo dye reduction,” Journal of Hazardous Materials, vol. 183, no. 1–3, pp. 931–939, 2010, doi: 10.1016/j.jhazmat.2010.08.005.
[51] P. S. Kumar et al., “Effect of pore size distribution on iron oxide coated granular activated carbons for phosphate adsorption – importance of mesopores,” Chemical Engineering Journal, vol. 326, pp. 231–239, 2017, doi: 10.1016/j.cej.2017.05.147.
[52] H.-Y. Chung, H.-M. Chang, and C.-P. Wang, “Manganese oxide-doped hierarchical porous carbon derived from tea leaf waste for high-performance supercapacitors,” International Journal of Molecular Sciences, vol. 25, no. 20, p. 10884, 2024, doi: 10.3390/ijms252010884.
[53] K.-G. Haw, W. A. W. A. Bakar, R. Ali, J.-F. Chong, and A. A. A. Kadir, “Catalytic oxidative desulfurization of diesel utilizing hydrogen peroxide and functionalized activated carbon in a biphasic diesel–acetonitrile system,” Fuel Processing Technology, vol. 91, no. 9, pp. 1105–1112, 2010, doi: 10.1016/j.fuproc.2010. 03.021.
[54] Z. C. Kampouraki, D. A. Giannakoudakis, K. S. Triantafyllidis, and E. A. Deliyanni, “Catalytic oxidative desulfurization of a 4,6-DMDBT containing model fuel by metal-free activated carbons: The key role of surface chemistry,” Green Chemistry, vol. 21, no. 24, pp. 6685–6698, 2019, doi: 10.1039/C9GC03234G.
[55] A. E. Mohammed et al., “Agricultural waste-based microporous catalysts for oxidative desulfurization of highly sour heavy gas oil,” Diamond and Related Materials, vol. 142, p. 110723, 2024, doi: 10.1016/j.diamond.2023. 110723.
[56] A. E. Vasu, “Surface modification of activated carbon for enhancement of nickel (II) adsorption,” Journal of Chemistry, vol. 5, no. 4, pp. 814–819, 2008, doi: 10.1155/2008/610503.
[57] A. Y. El-Naggar, “Characterization of modified and polymer coated alumina surfaces by infrared spectroscopy,” Journal of Spectroscopy, vol. 2013, no. 1, p. 706960, 2013, doi: 10.1155/ 2013/706960.
[58] L. Yate et al., “Composition and mechanical properties of AlC, AlN and AlCN thin films obtained by rf magnetron sputtering,” Surface and Coatings Technology, vol. 203, no. 13, pp. 1904–1907, 2009, doi: 10.1016/j.surfcoat.2009. 01.023.
[59] S. Fekri Aval et al., “Gene silencing effect of siRNA-magnetic modified with biodegradable copolymer nanoparticles on hTERT gene expression in lung cancer cell line,” Artificial Cells, Nanomedicine, and Biotechnology, vol. 44, no. 1, pp. 188–193, 2016, doi: 10.3109/21691401.2014.934456.
[60] V. H. Bn and R. Sankaran, “Performance of cutting tool with cross-chevron surface texture filled with green synthesized aluminium oxide nanoparticles,” Scientific Reports, vol. 9, no. 1, pp. 1–9, 2019, doi: 10.1038/s41598-019-54346-0.
[61] C. Dionigi et al., “Fabrication and properties of non-isolating γ-alumina meso-foam,” Journal of Alloys and Compounds, vol. 666, pp. 101–107, 2016, doi: 10.1016/j.jallcom.2016.01.075.
[62] P. Huang, G. Luo, L. Kang, M. Zhu, and B. Dai, “Preparation, characterization and catalytic performance of HPW/aEVM catalyst on oxidative desulfurization,” RSC Advances, vol. 7, no. 8, pp. 4681–4687, 2017, doi: 10.1039/ C6RA26587A.
[63] Z. Jiang, L. Hongying, Y. Zhang, and L. Can, “Oxidative desulfurization of fuel oils,” Chinese Journal of Catalysis, vol. 32, no. 5, pp. 707–715, 2011, doi: 10.1016/S1872-2067(10)60246-X.
[64] A. T. Jarullah et al., “Production of green fuel using a new synthetic magnetite mesoporous nano-silica composite catalyst for oxidative desulfurization: Experiments and process modeling,” Catalysts, vol. 14, no. 8, p. 529, 2024, doi: 10.3390/catal14080529.
[65] T. A. Saleh, K. O. Sulaiman, S. A. Al-Hammadi, H. Dafalla, and G. I. Danmaliki, “Adsorptive desulfurization of thiophene, benzothiophene and dibenzothiophene over activated carbon manganese oxide nanocomposite: With column system evaluation,” Journal of Cleaner Production, vol. 154, pp. 401–412, 2017, doi: 10.1016/j.jclepro.2017.03.169.
[66] A. N. Phan, A. P. Harvey, and M. Rawcliffe, “Continuous screening of base-catalysed biodiesel production using new designs of mesoscale oscillatory baffled reactors,” Fuel Processing Technology, vol. 92, no. 8, pp. 1560–1567, 2011, doi: 10.1016/j.fuproc.2011. 03.022.
[67] S. M. Ahmed, R. Law, A. N. Phan, and A. P. Harvey, “Thermal performance of meso-scale oscillatory baffled reactors,” Chemical Engineering and Processing: Process Intensification, vol. 132, pp. 25–33, 2018, doi: 10.1016/j.cep.2018. 08.009.
[68] H. M. Hmood et al., “Kaoline-based catalyst for a high stability desulfurization of sour heavy naphtha in a three-phase oscillatory baffled reactor,” Particuology, vol. 84, pp. 249–260, 2024, doi: 10.1016/j.partic.2023.06.016.
[69] J. R. McDonough, “Process development using oscillatory baffled mesoreactors,” Newcastle University, 2018, [Online]. Available: http://hdl.handle.net/10443/4051.
[70] Z. Khan and S. Ali, “Oxidative desulphurization followed by catalytic adsorption method,” South African Journal of Chemical Engineering, vol. 18, no. 2, pp. 14–28, 2013.
[71] S. A. Hameed, A. T. Nawaf, Q. A. Mahmood, L. T. Abdulateef, A. T. Jarullah, and I. M. Mujtaba, “Production of green fuel: A digital baffle batch reactor for enhanced oxidative desulfurization of light gas oil using nano-catalyst,” Iranian Journal of Chemistry and Chemical Engineering, vol. 42, no. 3, 2023.
[72] A. T. Nawaf, S. A. Gheni, A. T. Jarullah, and I. M. Mujtaba, “Optimal design of a trickle bed reactor for light fuel oxidative desulfurization based on experiments and modeling,” Energy & Fuels, vol. 29, no. 5, pp. 3366–3376, 2015, doi: 10.1021/acs.energyfuels.5b00157.
[73] M. A. Sobati, A. M. Dehkordi, M. Shahrokhi, and A. A. Ebrahimi, “Novel type of four-impinging-jets reactor for oxidative desulfurization of light fuel oils,” Industrial & Engineering Chemistry Research, vol. 49, no. 19, pp. 9339–9348, 2010, doi: 10.1021/ie101065q.
[74] M. Hewgill, M. Mackley, A. Pandit, and S. Pannu, “Enhancement of gas-liquid mass transfer using oscillatory flow in a baffled tube,” Chemical Engineering Science, vol. 48, no. 4, pp. 799–809, 1993, doi: 10.1016/0009-2509(93)80145-G.
[75] J. B. Bhasarkar, S. Chakma, and V. S. Moholkar, “Mechanistic features of oxidative desulfurization using sono-Fenton–peracetic acid (ultrasound/Fe²⁺–CH₃COOH–H₂O₂) system,” Industrial & Engineering Chemistry Research, vol. 52, no. 26, pp. 9038–9047, 2013, doi: 10.1021/ie400879j.
[76] B. A. A. Majeed and R. Haldhar, “Kinetics of oxidation of sulfur compounds: Rapid oxidation in new design of oscillatory baffled reactor,” Iraqi Journal of Chemical and Petroleum Engineering, vol. 26, no. 2, pp. 35–45, 2025, doi: 10.31699/IJCPE.2025.2.4.
[77] A. Nawaf and B. Abdul Majeed, “Kinetics study of oxidative desulfurization of real diesel fuel over uncoated and coated nano-catalysts in an oscillatory helical baffled reactor,” Journal of Chemical and Petroleum Engineering, vol. 58, no. 2, pp. 359–374, 2024, doi: 10.22059/jchpe. 2024.377539.1522.
[78] W. Ahmad et al., “Oxidative desulfurization of petroleum distillate fractions using manganese dioxide supported on magnetic reduced graphene oxide as catalyst,” Nanomaterials, vol. 11, no. 1, p. 203, 2021, doi: 10.3390/nano 11010203.
[79] N. A. S. M. Nazmi, W. N. W. Abdullah, F. Adam, W. N. A. W. Mokhtar, N. Yahaya, and N. M. Shukri, “Iron oxide catalyst for oxidative desulfurization of model diesel fuel,” Materials Science Forum, vol. 1010, pp. 418–423, 2020, doi: 10.4028/www.scientific.net/MSF.1010.418.
[80] J. R. Ugal, R. B. Jima’a, W. M. K. Al-Jubori, F. A. Bayader, and N. M. Al-Jubori, “Oxidative desulfurization of hydrotreated gas oil using Fe₂O₃ and Pd loaded over activated carbon as catalysts,” Oriental Journal of Chemistry, vol. 34, no. 2, p. 1091, 2018, doi: 10.13005/ojc/ 340261.
[81] W. Zhu, X. Liu, Z. Yang, and H. Li, “Synthesis of manganese-iron oxides/activated carbon as a highly effective adsorbent for sulfamerazine pollutant removal,” Korean Journal of Chemical Engineering, vol. 39, no. 11, pp. 3083–3091, 2022, doi: 10.1007/s11814-022-1147-7.
[82] G. Zhang, X. Zhao, P. Ning, D. Yang, X. Jiang, and W. Jiang, “Comparison on surface properties and desulfurization of MnO₂ and pyrolusite blended activated carbon by steam activation,” Journal of the Air & Waste Management Association, vol. 68, no. 9, pp. 958–968, 2018, doi: 10.1080/10962247.2018. 1460636.
[83] J. I. Humadi, G. H. A. Razzaq, M. A. Ahmed, and L. I. Saeed, “Improved kerosene quality with the use of a gamma alumina nanoparticles supported zinc oxide catalyst in a digital batch baffled reactor: Experiments and process modelling,” Korean Chemical Engineering Research, vol. 61, no. 2, pp. 226–233, 2023, doi: 10.9713/kcer.2023.61.2.226.
[84] A. A. Aabid, J. I. Humadi, G. S. Ahmed, A. T. Jarullah, M. A. Ahmed, and W. S. Abdullah, “Enhancement of desulfurization process for light gas oil using new zinc oxide loaded over alumina nanocatalyst,” Applied Science and Engineering Progress, vol. 16, no. 3, 2023, doi: 10.14416/j.asep.2023.02.007.DOI: 10.14416/j.asep.2025.12.006
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







