Page Header Logo Applied Science and Engineering Progress

Advances and Emerging Alternatives in Modified Cellulose Nanocrystals for Elastomer Reinforcement: A Review

Muhammad Thoriq Al Fath, Khairatun Najwa Mohd Amin

Abstract


Cellulose nanocrystals (CNCs) are increasingly recognised as sustainable nanofillers for elastomer composites due to their biodegradability and excellent mechanical properties. However, their inherent hydrophilicity limits compatibility with hydrophobic elastomer matrices, creating significant challenges for effective reinforcement. To overcome this, significant progress has been made through surface modification strategies. Physical approaches such as adsorption and plasma treatment improve compatibility via non-covalent interactions. While chemical routes including etherification/esterification, grafting, silylation, and nucleophilic modification introduce covalent bonds that adapt CNCs surface chemistry to polymer matrices. Such modifications have been shown to reliably improve dispersion, strengthen interfacial adhesion, and enhance both the thermal stability and mechanical performance of elastomer composites when compared with those reinforced by unmodified CNCs. Lignin-containing CNCs (LCNCs) offer distinct advantages by combining inherent hydrophobicity, thermal shielding, and simpler processing, making them a promising bio-based alternative to extensively modified CNCs (M-CNCs). Nonetheless, industrial implementation remains constrained by process complexity, high costs, and performance trade-offs at different filler loadings.

Keywords



[1]    A. C. Pandian, M. Thirumurugan, J. S. Parveen, and G. Rajesh, “3D fused deposition modelling of PLA/PBAT nanocomposites reinforced with GnP: Mechanical and thermal characterizations,” Journal of Elastomers & Plastics, 2025, doi: 10.1177/00952443251339798.

[2]    R. Prataviera, E. Pollet, R. E. S. Bretas, L. Avérous, and A. A. Lucas, “Nanocomposites based on renewable thermoplastic polyurethane and chemically modified cellulose nanocrystals with improved mechanical properties,” Journal of Applied Polymer Science, vol. 135, no. 45, 2018, Art. no. 46736, doi: 10.1002/app.46736.

[3]    I. Magaña et al., “Fully bio-based elastomer nanocomposites comprising polyfarnesene reinforced with plasma-modified cellulose nanocrystals,” Polymers, vol. 13, no. 16, p. 2810, 2021, doi: 10.3390/polym13162810.

[4]    W. Somphol et al., “Extraction of cellulose nanocrystals and nanofibers from rubber leaves and their impacts on natural rubber properties,” Applied Science and Engineering Progress, vol. 17, no. 2, 2024, Art. no. 7281, doi: 10.14416/j.asep.2023.11.010.

[5]    D. Dayanti et al., “Tuning rigid polyurethane foam with eco-friendly cellulose nanocrystals from oil palm empty fruit bunches as energy-efficient material composites for buildings,” Applied Science and Engineering Progress, vol. 17, no. 4, 2024, Art. no. 7544, doi: 10.14416/ j.asep.2024.09.001.

[6]    D. Sonowal and K. M. Wani, “Comprehensive review of cellulose nanocrystals: Preparation, properties, modifications and applications,” Bulletin of the National Research Centre, vol. 49, no. 55, 2025, doi: 10.1186/s42269-025-01349-9.

[7]    S. S. Qureshi, S. Nizamuddin, J. Xu, T. Vancov, and C. Chen, “Cellulose nanocrystals from agriculture and forestry biomass: Synthesis methods, characterization and industrial applications,” Environmental Science and Pollution Research, vol. 31, no. 4, 2024, doi: 10.1007/s11356-024-35127-3.

[8]    A. Werner, V. Schmitt, G. Sèbe, and V. Héroguez, “Synthesis of surfactant-free micro- and nanolatexes from Pickering emulsions stabilized by acetylated cellulose nanocrystals†,” Polymer Chemistry, vol. 28, no. 39, 2017, doi: 10.1039/c7py01203a.

[9]    Y. Zhang, V. Karimkhani, B. T. Makowski, G. Samaranayake, and S. J. Rowan, “Nanoemulsions and nanolatexes stabilized by hydrophobically functionalized cellulose nanocrystals,” Macromolecules, vol. 50, no. 16, 2017, doi: 10.1021/acs.macromol.7b00982.

[10]  B. P. Kanoth, M. Claudino, M. Johansson, L. A. Berglund, and Q. Zhou, “Biocomposites from natural rubber: Synergistic effects of functionalized cellulose nanocrystals as both reinforcing and cross- linking agents via free-radical thiol-ene chemistry,” ACS Applied Materials & Interfaces, vol. 7, no. 30, 2015, doi: 10.1021/acsami.5b03115.

[11]  W. Du, Z. Zhang, C. Yin, X. Ge, and L. Shi, “Preparation of shape memory polyurethane/modified cellulose nanocrystals composites with balanced comprehensive performances,” Polymers for Advanced Technologies, vol. 32, no. 12, pp. 4710–4720, 2021, doi: 10.1002/pat.5464.

[12]  N. M. Girouard, S. Xu, G. T. Schueneman, M. L. Shofner, and J. C. Meredith, “Site-selective modification of cellulose nanocrystals with isophorone diisocyanate and formation of polyurethane-CNC composites,” ACS Applied Materials & Interfaces, vol. 8, no. 2, 2015, doi: 10.1021/acsami.5b10723.

[13]  C. K. Arvinda Pandian, M. M. Dharmaraj, M. Thirumurugan, and H. Siddhi Jailani, “Basalt fabric/(3-aminopropyl) triethoxysilane modified epoxy laminates reinforced with nano-silica, OMMT and GNP: Mechanical and dynamic mechanical studies,” Polymer Bulletin, vol. 81, no. 13, pp. 11955–11974, 2024, doi: 10.1007/s00289-024-05261-6.

[14]  F. Coccia et al., “Chemically functionalized cellulose nanocrystals as reactive filler in bio-based polyurethane foams,” Polymers, vol. 13, no. 15, 2021, doi: 10.3390/polym13152556.

[15]  M. J. Page et al., “The PRISMA 2020 statement: An updated guideline for reporting systematic reviews,” BMJ, vol. 372, p. 71, 2021, doi: 10.1136/bmj.n71.

[16]  M. Nagalakshmaiah, O. Nechyporchuk, N. El Kissi, and A. Dufresne, “Melt extrusion of polystyrene reinforced with cellulose nanocrystals modified using poly[(styrene)-co-(2-ethylhexyl acrylate)] latex particles,” European Polymer Journal, vol. 91, pp. 297–306, 2017, doi: 10.1016/j.eurpolymj.2017.04.020.

[17]  W. Jiang et al., “Surface modification of nanocrystalline cellulose and its application in natural rubber composites,” Journal of Applied Polymer Science, vol. 137, no. 39, pp. 1–10, 2020, doi: 10.1002/app.49163.

[18]  S. Lin et al., “Structure and mechanical properties of new biomass-based nanocomposite: Castor oil-based polyurethane reinforced with acetylated cellulose nanocrystal,” Carbohydrate Polymers, vol. 95, no. 1, pp. 91–99, 2013, doi: 10.1016/j.carbpol.2013.02.023.

[19]  N. B. Palaganas, J. O. Palaganas, S. H. Z. Doroteo, and J. C. Millare, “Covalently functionalized cellulose nanocrystal-reinforced photocurable thermosetting elastomer for 3D printing application,” Additive Manufacturing, vol. 61, 2023, Art. no. 103295, doi: 10.1016/j.addma.2022.103295.

[20]  Y. Zhang, H. Yang, N. Naren, and S. J. Rowan, “Surfactant-free latex nanocomposites stabilized and reinforced by hydrophobically functionalized cellulose nanocrystals,” ACS Applied Polymer Materials, vol. 2, no. 6, pp. 2291–2302, 2020, doi: 10.1021/acsapm.0c00263.

[21]  N. Bitinis et al., “Poly(lactic acid)/natural rubber/cellulose nanocrystal bionanocomposites Part I. Processing and morphology,” Carbohydrate Polymers, vol. 96, no. 2, pp. 611–620, 2013, doi: 10.1016/j.carbpol.2013.02.068.

[22]  S. Silvano et al., “Synthesis of bio-polyol-functionalized nanocrystalline celluloses as reactive / reinforcing components in bio-based polyurethane foams by homogeneous environment modification,” International Journal of Biological Macromolecules, vol. 278, no. 4, 2024, Art. no. 135282, doi: 10.1016/j.ijbiomac.2024.135282.

[23]  D. Tian et al., “High-performance polyurethane nanocomposites based on UPy-modified cellulose nanocrystals,” Carbohydrate Polymers, vol. 219, pp. 191–200, 2019, doi: 10.1016/j.carbpol.2019.05.029.

[24]  H. Lee et al., “Non-covalent interaction induces controlled reinforcement of thermoplastic elastomer composites homologously incorporated with hydrophobized cellulose nanocrystals,” Composites Part B: Engineering, vol. 282, 2024, Art. no. 111579, doi: 10.1016/j.compositesb.2024.111579.

[25]  E. Ojogbo, C. Tzoganakis, and T. H. Mekonnen, “Silane-modified cellulose nanocrystals (CNCs) based natural rubber composites,” Composites Part A: Applied Science and Manufacturing, vol. 190, 2025, Art. no. 108632, doi: 10.1016/j.compositesa.2024.108632.

[26]  S. Esmaeili and M. R. Moghbeli, “Crosslinkable latex-based acrylic adhesives containing functionalized cellulose nanocrystals (fCNCs),” International Journal of Adhesion and Adhesives, vol. 132, 2024, Art. no. 103700, doi: 10.1016/j.ijadhadh.2024.103700.

[27]  X. Yang et al., “Mechanical reinforcement of room-temperature-vulcanized silicone rubber using modified cellulose nanocrystals as cross-linker and nanofiller,” Carbohydrate Polymers, vol. 229, 2020, Art. no. 115509, doi: 10.1016/j.carbpol.2019.115509.

[28]  X. Fan et al., “Modified cellulose nanocrystals are used to enhance the performance of self-healing siloxane elastomers,” Carbohydrate Polymers, vol. 273, pp. 1–11, 2021, Art. No. 118528, doi: 10.1016/j.carbpol.2021.118529.

[29]  T. H. Mekonnen, T. Haile, and M. Ly, “Hydrophobic functionalization of cellulose nanocrystals for enhanced corrosion resistance of polyurethane nanocomposite coatings,” Applied Surface Science, vol. 540, 2021, Art. no. 148299, doi: 10.1016/j.apsusc.2020.148299.

[30]  P. Zhang, Y. Lu, M. Fan, P. Jiang, and Y. Dong, “Modified cellulose nanocrystals enhancement to mechanical properties and water resistance of vegetable oil-based waterborne polyurethane,” Journal of Applied Polymer Science, vol. 136, no. 47, pp. 1–8, 2019, doi: 10.1002/app.48228.

[31]  X. Sun et al., “Fabrication of silane-grafted cellulose nanocrystals and their effects on the structural, thermal, mechanical, and hysteretic behavior of thermoplastic polyurethane,” International Journal of Molecular Sciences, vol. 24, no. 5, 2023, doi: 10.3390/ijms24055036.

[32]  H. Tao, A. Dufresne, and N. Lin, “Double-network formation and mechanical enhancement of reducing end-modified cellulose nanocrystals to the thermoplastic elastomer based on click reaction and bulk cross-linking,” Macromolecules, vol. 52, no. 15, pp. 5894–5906, 2019, doi: 10.1021/acs.macromol.9b01213.

[33]  J. Fröhlich, W. Niedermeier, and H. D. Luginsland, “The effect of filler-filler and filler-elastomer interaction on rubber reinforcement,” Composites Part A: Applied Science and Manufacturing, vol. 36, no. 4, pp. 449–460, 2005, doi: 10.1016/j.compositesa.2004.10.004.

[34]  M. Roman and W.T. Winter, “Effect of sulfate groups from sulfuric acid hydrolysis on the thermal degradation behavior of bacterial cellulose,” Biomacromolecules, vol. 5, no. 5, pp. 1671–1677, 2004, doi: 10.1021/bm034519+.

[35]  N. Lin and A. Dufresne, “Surface chemistry, morphological analysis and properties of cellulose nanocrystals with gradiented sulfation degrees,” Nanoscale, vol. 6, no. 10, pp. 5384–5393, 2014, doi: 10.1039/c3nr06761k.

[36]  A. E. Krauklis et al., “Dissolution kinetics of R-glass fibres: Influence of water acidity, temperature, and stress corrosion,” Fibers, vol. 7, no. 3, pp. 1–18, 2019, doi: 10.3390/ FIB7030022.

[37]  E. O. Ogunsona, P. Panchal, and T. H. Mekonnen, “Surface grafting of acrylonitrile butadiene rubber onto cellulose nanocrystals for nanocomposite applications,” Composites Science and Technology, vol. 184, 2019, Art. no.  107884, doi: 10.1016/j.compscitech.2019.107884.

[38]  A. Zohrevand, A. Ajji, and F. Mighri, “Relationship between rheological and electrical percolation in a polymer nanocomposite with semiconductor inclusions,” Rheologica Acta, vol. 53, no. 3, pp. 235–254, 2014, doi: 10.1007/s00397-013-0750-2.

[39]  D. K. Owens and R. C. Wendt, “Estimation of the surface free energy of polymers,” Journal of applied polymer science, vol. 13, no. 8, pp. 1741–1747, 1969, doi: 10.1002/app.1969.07013 0815.

[40]  P. Fabbri, G. Champon, M. Castellano, M. N. Belgacem, and A. Gandini, “Reactions of cellulose and wood superficial hydroxy groups with organometallic compounds,” Polymer international, vol. 53, no. 1, pp. 7–11, 2004, doi: 10.1002/pi.1396.

[41]  C. E. Hoyle and C. N. Bowman, “Thiol–ene click chemistry,” Angewandte Chemie International Edition, vol. 49, no. 9, pp. 1540–1573, 2010, doi: 10.1002/anie.200903924.

[42]  I. Kalashnikova, H. Bizot, P. Bertoncini, B. Cathala, and I. Capron, “Cellulosic nanorods of various aspect ratios for oil in water Pickering emulsions,” Soft Matter, vol. 9, no. 3, pp. 952–959, 2013, doi: 10.1039/C2SM26472B.

[43]  A. Dufresne, “Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 376, no. 2112, 2018, Art. no. 20170040, doi: 10.1098/rsta.2017.0040.

[44]  V. Favier, H. Chanzy, and J. Cavaillé, “Polymer nanocomposites reinforced by cellulose whiskers,” Macromolecules, vol. 28, no. 18, pp. 6365–6367, 1995, doi: 10.1021/ma00122a053.

[45]  P. J. Flory and J. Rehner Jr, “Statistical mechanics of cross‐linked polymer networks II. Swelling,” The journal of chemical physics, vol. 11, no. 11, pp. 521–526, 1943, doi: 10.1063/ 1.1723792.

[46]  N. Bitinis et al., “Poly(lactic acid)/natural rubber /cellulose nanocrystal bionanocomposites. Part II : Properties evaluation,” Carbohydrate Polymers, vol. 96, no. 2, pp. 621–627, 2013, doi: 10.1016/j.carbpol.2013.03.091.

[47]  M. Yasuniwa, S. Tsubakihara, Y. Sugimoto, and C. Nakafuku, “Thermal analysis of the double‐melting behavior of poly (L‐lactic acid),” Journal of Polymer Science Part B: Polymer Physics, vol. 42, no. 1, pp. 25–32, 2004, doi: 10.1002/polb.10674.

[48]  W. Bauhofer and J. Z. Kovacs, “A review and analysis of electrical percolation in carbon nanotube polymer composites,” Composites Science and Technology, vol. 69, no. 10, pp. 1486–1498, 2009, doi: 10.1016/j.compscitech. 2008.06.018.

[49]  H. Es-Haghi, S. M. Mirabedini, M. Imani, and R. R. Farnood, “Preparation and characterization of pre-silane modified ethyl cellulose-based microcapsules containing linseed oil,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 447, pp. 71–80, 2014, doi: 10.1016/j.colsurfa.2014.01.021.

[50]  H. Hettegger, I. Sumerskii, S. Sortino, A. Potthast, and T. Rosenau, “Silane meets click chemistry: towards the functionalization of wet bacterial cellulose sheets,” ChemSusChem, vol. 8, no. 4, pp. 680–687, 2015, doi: 10.1002/cssc. 201402991.

[51]  N. Salahuddin, S. A. Abo-El-Enein, A. Selim, and O. S. El-Dien, “Synthesis and characterization of polyurethane/organo-montmorillonite nanocomposites,” Applied Clay Science, vol. 47, no. 3–4, pp. 242–248, 2010, doi: 10.1016/j.clay.2009.10.017.

[52]  P. C. Ma, N. A. Siddiqui, G. Marom, and J. K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review,” Composites Part A: Applied Science and Manufacturing, vol. 41, no. 10, pp. 1345–1367, 2010, doi: 10.1016/j.compositesa.2010.07. 003.

[53]  W. Schmolke, N. Perner, and S. Seiffert, “Dynamically cross-linked polydimethylsiloxane networks with ambient-temperature self-healing,” Macromolecules, vol. 48, no. 24, pp. 8781–8788, 2015, doi: 10.1021/acs.macromol. 5b01666.

[54]  L. R. Arcot, M. Lundahl, O. J. Rojas, and J. Laine, “Asymmetric cellulose nanocrystals: thiolation of reducing end groups via NHS–EDC coupling,” Cellulose, vol. 21, no. 6, pp. 4209–4218, 2014, doi: 10.1007/s10570-014-0426-9.

[55]  K. C. Teh, M. L. Foo, C. W. Ooi, and I. M. L. Chew, “Sustainable and cost-effective approach for the synthesis of lignin-containing cellulose nanocrystals from oil palm empty fruit bunch,” Chemosphere, vol. 267, 2021, Art. no. 129277, doi: 10.1016/j.chemosphere.2020.129277.

[56]  M. Ma et al., “Lignin-containing cellulose nanocrystals/sodium alginate beads as highly effective adsorbents for cationic organic dyes,” International Journal of Biological Macromolecules, vol. 139, pp. 640–646, 2019, doi: 10.1016/j.ijbiomac.2019.08.022.

[57]  X. Wu et al., “Corn Stover-derived nanocellulose and lignin-modified particles: Pickering emulsion stabilizers and potential quercetin sustained-release carriers,” Food Chemistry, vol. 465, 2025, Art. no. 142021, doi: 10.1016/ j.foodchem.2024.142021.

[58]  C. Ouyang et al., “Lignin-containing cellulose nanocrystals enhanced electrospun polylactic acid-based nanofibrous mats: Strengthen and toughen,” International Journal of Biological Macromolecules, vol. 280, 2024, Art. no. 135617, doi: 10.1016/j.ijbiomac.2024.135617.

[59]  M. Li, Y. Pu, and A. J. Ragauskas, “Current understanding of the correlation of lignin structure with biomass  recalcitrance,” Frontiers in Chemistry, vol. 4, 2016, Art. no. 45, doi: 10.3389/fchem.2016.00045.

[60]  M. Xia, O. J. Valverde-Barrantes, V. Suseela, C. B. Blackwood, and N. Tharayil, “Characterizing natural variability of lignin abundance and composition in fine  roots across temperate trees: A comparison of analytical methods,” The New Phytologist, vol. 236, no. 6, pp. 2358–2373, Dec. 2022, doi: 10.1111/nph.18515.

[61]  Q. Li et al., “Discovering biomass structural determinants defining the properties of  plant-derived renewable carbon fiber,” iScience, vol. 23, no. 8, 2020, Art. no. 101405, doi: 10.1016/j.isci.2020.101405.

Full Text: PDF

DOI: 10.14416/j.asep.2026.01.010

Refbacks

  • There are currently no refbacks.