Page Header Logo Applied Science and Engineering Progress

Kinetic, Thermodynamic, Mass Transfer, and Determination of Controlling Steps in Pectin Extraction from Lemon Peel (Citrus limon L. Osbeck)

Vivi Nurhadianty, Lienda Aliwarga Handojo, I Dewa Gede Arsa Putrawan, Tjandra Setiadi

Abstract


Lemon peel, a byproduct of citrus processing, contains high levels of pectin valued for its functional roles in food and pharmaceutical products. This study investigates pectin extraction using a mechanistic approach based on the Shrinking Core Model (SCM), which describes the progressive reaction of solid particles. The process follows first-order kinetics, with simultaneous extraction and degradation. Optimal conditions were 95 °C, pH 1.8, and 50 minutes, yielding 36% pectin. Key parameters included extraction rate constant k₁ = 0.0562 min⁻¹, degradation rate constant k₂ = 0.0039 min⁻¹, activation energies Eₐ₁ = 31.7 kJ mol⁻¹, Eₐ₂ = –22.9 kJ mol⁻¹, enthalpy change ΔH° = 76.05 kJ mol⁻¹, entropy change ΔS° = 0.23 J mol⁻¹ K⁻¹, and Gibbs free energy ΔG° < 0. The diffusion coefficient ranged from 0.055 to 0.06 × 10⁻¹⁰ m² s⁻¹ for 0.34 mm particles. The extraction process was controlled by both internal diffusion and chemical reactions. This study presents a novel integration of kinetic, mass transfer, and thermodynamic models, offering a predictive framework for optimizing sustainable and energy-efficient pectin production from lemon waste.

Keywords



[1]    United States Department of Agriculture. “Citrus: world markets and trade.” fas.usda.gov. Accessed: Aug. 25, 2025. [Online]. Available: https://www.fas.usda.gov/data/citrus-world-markets-and-trade

[2]    M. Ahmed and A. Saeid, “Citrus Fruits: Nutritive Value and Value-Added Products,” in Citrus - Research, Development and Biotechnology, London, UK: IntechOpen, Nov. 03, 2021. doi: 10.5772/intechopen.95881.

[3]    Badan Pusat Statistik. “Distribusi Perdagangan Komoditas Jeruk Indonesia 2024.” bps.go.id. Accessed: Aug. 25, 2025. [Online]. Available: https://www.bps.go.id/id/publication/2024/12/31/2407bbb599b5650ab858c344/distribusi-perdagangan-komoditas-jeruk-indonesia-2024-.html

[4]    S. Suri, A. Singh, and P. K. Nema, “Current applications of citrus fruit processing waste: A scientific outlook,” Applied Food Research, vol. 2, no. 1, p. 100050, 2022, doi: 10.1016/j.afres. 2022.100050.

[5]    A. Dambuza et al., “Extraction, characterization, and antioxidant activity of pectin from lemon peels,” Molecules, vol. 29, no. 3878, pp. 1–14, 2024, doi: 10.3390/molecules29163878.

[6]    S. Q. Liew, W. H. Teoh, C. K. Tan, R. Yusoff, and G. C. Ngoh, “Subcritical water extraction of low methoxyl pectin from pomelo (Citrus grandis (L.) Osbeck) peels,” International Journal of Biological Macromolecules, vol. 116, pp. 128–135, 2018, doi: 10.1016/j.ijbiomac. 2018.05.013.

[7]    M. M. Umaña, M. E. Dalmau, V. S. Eim, A. Femenia, and C. Rosselló, “Effects of acoustic power and pH on pectin-enriched extracts obtained from citrus by-products: modelling of the extraction process,” Journal of the Science of Food and Agriculture, vol. 99, no. 15, pp. 6893–6902, Aug. 2019, doi: 10.1002/jsfa.9975.

[8]    R. M. Zaid, P. Mishra, S. Tabassum, Z. A. Wahid, and A. M. M. Sakinah, “High methoxyl pectin extracts from Hylocereus polyrhizus peels: Extraction kinetics and thermodynamic studies,” International Journal of Biological Macromolecules, vol. 141, pp. 1147–1157, Sep. 2019, doi: 10.1016/j.ijbiomac.2019.09.017.

[9]    S. Valdivia-Rivera, I. E. Herrera-Pool, R. Ayora-Talavera, and M. Alejandro, “Kinetic, thermodynamic, physicochemical, and economical characterization of pectin from Mangifera indica L. cv. Haden residues,” Foods, vol. 10, no. 2093, pp. 1–21, Sep. 2021, doi: 10.3390/ foods10092093.

[10]  Ó. Benito-Román, R. Melgosa, A. E. Illera, M. T. Sanz, and S. Beltrán, “Kinetics of extraction and degradation of pectin derived compounds from onion skin wastes in subcritical water,” Food Hydrocolloids, vol. 153, p. 109957, Mar. 2024, doi: 10.1016/j.foodhyd.2024.109957.

[11]  P. Zhou, X. Li, J. Zhou, Y. Yang, J. Zhi, and L. Shen, “Mass transfer mechanism of the multivariate consecutive extraction process of pectin and hesperidin from Citrus aurantium L.: Kinetics, thermodynamics, diffusion and mass transfer coefficients,” Separation and Purification Technology, vol. 311, p. 123339, Feb. 2023, doi: 10.1016/j.seppur.2023.123339.

[12]  J. P. Jarrín-Chacón, J. Núñez-Pérez, R. del C. Espín-Valladares, L. A. Manosalvas-Quiroz, H. M. Rodríguez-Cabrera, and J. M. Pais-Chanfrau, “Pectin extraction from residues of the cocoa fruit (Theobroma cacao L.) by different organic acids: a comparative study,” Foods, vol. 12, no. 3, pp. 1–14, Jan. 2023, doi: 10.3390/ foods12030590.

[13]  I. Das and A. Arora, “Kinetics and mechanistic models of solid–liquid extraction of pectin using advanced green techniques: A review,” Food Hydrocolloids, vol. 120, p. 106931, Jun. 2021, doi: 10.1016/j.foodhyd.2021.106931.

[14]  S. T. Mgoma, M. Basitere, and V. V. Mshayisa, “Kinetics and thermodynamics of oil extraction from South African hass avocados using hexane as a solvent,” South African Journal of Chemical Engineering, vol. 37, pp. 244–251, Jun. 2021, doi: 10.1016/j.sajce.2021.06.007.

[15]  L. D. Asnin and M. V. Stepanova, “On physical meaning of van’t Hoff equation and its applicability in chromatography,” Journal of Chromatography A, vol. 1733, p. 465250, Aug. 2024, doi: 10.1016/j.chroma.2024.465250.

[16]  F. Faraji, A. Alizadeh, F. Rashchi, and N. Mostoufi, “Kinetics of leaching: A review,” Reviews in Chemical Engineering, vol. 38, no. 2. pp. 113–148, Sep. 2022. doi: 10.1515/revce-2019-0073.

[17]  E. Tarifa, J. García, and C. Vera, “Conversion‐time relations for fluid–solid reactors with shrinking‐core kinetics,” The Canadian Journal of Chemical Engineering, vol. 103, pp. 4413–4425, Feb. 2025, doi: 10.1002/cjce.25644.

[18]  G. Yanbo and J. Bing, “Kinetic analysis and optimum design of extracting pectin from pineapple peel by ion exchange,” IOP Conference Series: Earth and Environmental Science, vol. 546, no. 5, p. 052048, Aug. 2020, doi: 10.1088/1755-1315/546/5/052048.

[19]  F. Zhang et al., “Systematic evaluation of a series of pectic polysaccharides extracted from apple pomace by regulation of subcritical water conditions,” Food Chemistry, vol. 368, p. 130833, Jan. 2022, doi: 10.1016/j.foodchem. 2021.130833.

[20]  M. A. Sayed, J. Kumar, M. R. Rahman, F. Noor, and M. A. Alam, “Effect of extraction parameters on the yield and quality of pectin from mango (Mangifera indica L.) peels,” Discover Food, vol. 2, no. 1, p. 28, Oct. 2022, doi: 10.1007/s44187-022-00029-1.

[21]  T. J. A. Rodrigues et al., “Optimized extraction of pectin from cassava root cortex: Evaluating aqueous and acidic methods,” Journal of Food Measurement and Characterization, vol. 19, no. 1, pp. 49–63, Nov. 2024, doi: 10.1007/s11694-024-02932-w.

[22]  M. M. Kamal, J. Kumar, M. A. H. Mamun, M. N. U. Ahmed, M. R. I. Shishir, and S. C. Mondal, “Extraction and characterization of pectin from citrus sinensis peel,” Journal of Biosystems Engineering, vol. 46, no. 1, pp. 16–25, Feb. 2021, doi: 10.1007/s42853-021-00084-z.

[23]  J. Kohout, “Modified Arrhenius equation in materials science, chemistry and biology,” Molecules, vol. 26, no. 23, p. 7162, Nov. 2021, doi: 10.3390/molecules26237162.

Full Text: PDF

DOI: 10.14416/j.asep.2026.02.002

Refbacks

  • There are currently no refbacks.