Preharvest Shellac Fruit Coating at Mature Green Stage Delays Ripening Process and Alleviates Translucent Flesh Disorder of Harvested Mangosteen (Garcinia mangostana L.)
Abstract
Keywords
[1] O. Mazlan, W. M. Aizat, S. N. Baharum, K. A. Azizan, and N. M. Noor, “Metabolomics analysis of developing Garcinia mangostana seed reveals modulated levels of sugars, organic acids and phenylpropanoid compounds,” Scientia Horticulturae, vol. 233, pp. 323–330, Mar. 2018, doi: 10.1016/j.scienta.2018.01.061.
[2] Nationthailand. “Thai mangosteen exports post record growth.” nationthailand.com. Accessed: Jul. 2, 2025. [Online.] Available: https://www. nationthailand.com/blogs/business/trade/40042139
[3] D. D. Matra, T. Kozaki, K. Ishii, R. Poerwanto, and E. Inoue, “Comparative transcriptome analysis of translucent flesh disorder in mangosteen (Garcinia mangostana L.) fruits in response to different water regimes,” PLoS One, vol. 14, Jul. 2019, Art. no. e0219976, doi: 10.1371/journal.pone.0219976.
[4] S. Sdoodee and R. Chiarawipa, “Regulating irrigation during pre-harvest to avoid the incidence of translucent flesh disorder and gamboge disorder of mangosteen fruits,” Songklanakarin Journal of Science and Technology, vol. 27, no. 5, pp. 957–965, Oct. 2005.
[5] S. Pechkeo, S. Sdoodee, and C. Nilnond, “The effects of calcium and boron sprays on the incidence of translucent flesh disorder and gamboge disorder in mangosteen (Garcinia mangostana L.),” Kasetsart Journal (Natural Science), vol. 41, no. 4, pp. 621–632, Dec. 2007.
[6] S. Pechkeo, C. Nilnond, and S. Sdoodee, “Feasibility study to alleviate the translucent flesh and gamboge disorders of mangosteen (Garcinia mangostana L.) by spraying with calcium chloride,” Acta Horticulturae, vol. 975, pp. 441–447, Feb. 2013, doi: 10.17660/ ActaHortic.2013.975.57.
[7] S. Noichinda, K. Bodhipadma, and S. Kong-In, “Capillary water in pericarp enhances hypoxic condition during on-tree fruit maturation that induces lignification and triggers translucent flesh disorder in mangosteen (Garcinia mangostana L.),” Food Quality, vol. 2017, Dec. 2017, Art. no. 7428959, doi: 10.1155/2017/7428959.
[8] S. Noichinda, K. Bodhipadma, S. Rutatip, P. Prasertsak, and C. Wongs-Aree, “Scanning electron microscopic study of mangosteen aril: Surface image and element detection,” Agricultural Science and Innovations Journal, vol. 55, no. 2 (Suppl.), pp. 143–146, Dec. 2024.
[9] C. Wongs-Aree, P. Siripirom, A. Satitpongchai, K. Bodhipadma, and S. Noichinda, “Increasing lignification in translucent disorder aril of mangosteen related to the ROS defensive function,” Food Quality, vol. 2021, Feb. 2021, Art. no. 6674208, doi: 10.1155/2021/6674208.
[10] M. Irimia-Vladu, E. D. Głowacki, G. Schwabegger, L. Leonat, H. Z. Akpinar, H. Sitter, S. Bauerb, and N. S. Sariciftcia, “Natural resin shellac as a substrate and a dielectric layer for organic field-effect transistors,” Green Chemistry, vol. 15, Mar. 2013, Art. no. 1473, doi: 10.1039/c3gc40388b.
[11] N. Thombare, S. Kumar, U. Kumari, P. Sakare, R. K. Yogi, N. Prasad, and K. K. Sharma, “Shellac as a multifunctional biopolymer: A review on properties, applications and future potential,” International Journal of Biological Macromolecules, vol. 215, pp. 203–223, Aug. 2022, doi: 10.1016/j.ijbiomac.2022.06.090.
[12] D. Skaf, T. C. Gomes, R. Majidzadeh, R. N. Hussein, T. B. Carmichael, and S. Rondeau-Gagné, “Shellac as dielectric materials in organic field-effect transistors: from silicon to paper substrates,” Flexible and Printed Electronics, vol. 8, June 2023, Art. no. 024002, doi: 10.1088/2058-8585/acda48.
[13] Y. Yuan, N. He, Q. Xue, Q. Guo, L. Dong, M. H. Haruna, X. Zhang, B. Li, and L. Li, “Shellac: A promising natural polymer in the food industry,” Trends in Food Science & Technology, vol. 109, pp. 139–153, Mar. 2021, doi: 10.1016/j.tifs. 2021.01.031.
[14] G. Yan, Z. Cao, D. Devine, M. Penning, and N. M. Gately, “Physical properties of shellac material used for hot melt extrusion with potential application in the pharmaceutical industry,” Polymers (Basel), vol. 13, Oct. 2021, Art. no. 3723, doi: 10.3390/polym13213723.
[15] J. Ma, Z. Zhou, K. Li, K. Li, L. Liu, W. Zhang, J. Xu, X. Tu, L. Du, and H. Zhang, “Novel edible coating based on shellac and tannic acid for prolonging postharvest shelf life and improving overall quality of mango,” Food Chemistry, vol. 354, Aug. 2021, Art. no. 129510, doi: 10.1016/j.foodchem.2021.129510.
[16] C. Wongs-Aree, H. T. Nguyen, and S. Noichinda, “Improved postharvest techniques for fruit coatings,” in New Advances in Postharvest Technology, I. Kahramanoğlu, Ed. London, UK: IntechOpen, 2023, pp. 1–31.
[17] K. Chitravathi, O. P. Chauhan, and P. S. Raju, “Postharvest shelf-life extension of green chillies (Capsicum annuum L.) using shellac-based edible surface coatings,” Postharvest Biology and Technology, vol. 92, pp. 146–148, Jun. 2014, doi: 10.1016/j.postharvbio.2014.01. 021.
[18] K. Li et al., “A novel approach for authentication of shellac resin in the shellac-based edible coatings: Contain shellac or not in the fruit wax preservative coating,” Food Chemistry: X, vol. 14, June 2022, Art. no. 100349, doi: 10.1016/j.fochx.2022.100349.
[19] C. A. Eaves, C. L. Lockhart, R. Stark, and D. L. Craig, “Influence of preharvest sprays of calcium salts and wax on fruit quality of red raspberry,” American Society for Horticultural Science, vol. 97, pp. 706–707, Nov. 1972.
[20] J. Narciso, C. Ference, and W. Peeples, “Preharvest measures for postharvest improvement in marketable fresh citrus,” Proceedings of the Florida State Horticultural Society, vol. 123, pp. 252–254, Dec. 2010.
[21] M. Gutiérrez-Pozo, V. Serna-Escolano, M. Giménez-Berenguer, M. J. Giménez, and P. J. Zapata, “The preharvest application of essential oils (carvacrol, eugenol, and thymol) reduces fungal decay in lemons,” Agriculture, vol. 13, July 2023, Art. no. 1437, doi: 10.3390/ agriculture13071437.
[22] Z. Zhu, W. Mei, R. Li, H. Liu, S. Chen, H. Yang, R. Xu, T. Huang, J. Xiang, F. Zhu, and Y. Cheng, “Preharvest glycerol treatment enhances postharvest storability of orange fruit by affecting cuticle metabolism,” Postharvest Biology and Technology, vol. 204, Oct. 2023, Art. no. 112448, doi: 10.1016/j.postharvbio. 2023.112448.
[23] A. Wang, S. Jain, V. Dia, S. C. Lenaghan, and Q. Zhong, “Shellac micelles loaded with curcumin using a pH cycle to improve dispersibility, bioaccessibility, and potential for colon delivery,” Agriculture and Food Chemistry, vol. 70, no. 48, pp. 15166–15177, Dec. 2022, doi: 10.1021/acs.jafc.2c04428.
[24] H. Sirisukchaitavorn, S. Noichinda, K. Bodhipadma, and C. Wongs-Aree, “Changes in pectate lyase, xylanase and cellulase activities in different peel color development of normal and translucent mangosteen (Garcinia mangostana L.) fruits,” Agricultural Science Journal, vol. 41, no. 2, pp. 709–712, May 2010.
[25] M. Barbier and J.-F. Thibaul, “Pectic substances of cherry fruits,” Phytochemistry, vol. 21, pp. 111–115, Jan. 1982, doi: 10.1016/0031-9422(82)80024-1.
[26] H. G. Rosli, P. M. Civello, and G. A. Martínez, “Changes in cell wall composition of three Fragaria x ananassa cultivars with different softening rate during ripening,” Plant Physiology and Biochemistry, vol. 42, pp. 823–831, Dec. 2004, doi: 10.1016/j.plaphy.2004. 10.002.
[27] M. Martin-Cabrejas, K. W. Waldron, and R. R. Selvendran, “Cell wall changes in Spanish pear during ripening,” Plant Physiology, vol. 144, pp. 541–548, Oct. 1994, doi: 10.1016/S0176-1617 (11)82135-8.
[28] S. Dangcham, “Mechanism of flesh translucent disorder development of mangosteen fruit,” M.S. thesis, Department of Horticulture, Kasetsart University, Bangkok, Thailand, 2000.
[29] N. Blumenkrantz and G. Asboe-Hansen, “New method for quantitative determination of uronic acids,” Analytical Biochemistry, vol. 54, pp. 484–489, Aug. 1973, doi: 10.1016/0003-2697 (73)90377-1.
[30] R. J. Bruce, and C. A. West, “Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean,” Plant Physiology, vol. 91, pp. 889–897, Nov. 1989, doi: 10.1104/pp.91.3.889.
[31] J. Bai, R. D. Hagenmaier, and E. A. Baldwin, “Coating selection for ‘Delicious’ and other apples,” Postharvest Biology and Technology,
vol. 28, no. 3, pp. 381–390, Jun. 2003, doi: 10.1016/S0925-5214(02)00201-6.
[32] P. Kumar, S. Sethi, R. R. Sharma, and E. Varghese, “Influence of edible coatings on physiological and biochemical attributes of Japanese plum (Prunus salicina Lindell cv. Santa Rosa),” Fruits, vol. 73, no. 1, pp. 31–38, 2018, doi: 10.17660/th2018/73.1.4.
[33] R. Krishnan, M. Misra, J. Subramanian, and A. Mohanty, “Emerging trends and application of edible coating as a sustainable solution for postharvest management in stone fruits: A comprehensive review,” Comprehensive Reviews in Food Science and Food Safety, vol. 24, no. 3, Art. no. e70179, May 2025, doi: 10.1111/1541-4337.70179.
[34] M. Miranda et al., “Nano– and micro– carnauba wax emulsions versus shellac protective coatings on postharvest citrus quality,” American Society for Horticultural Science, vol. 146, no. 1, pp. 40–49, Nov. 2020, doi: 10.21273/JASHS04972-20.
[35] O. P. Chauhan, C. Nanjappa, N, Ashok, N. Ravi, N, Roopa, and P. S. Raju, “Shellac and Aloe vera gel based surface coating for shelf life extension of tomatoes,” Food Science and Technology, vol. 52, no. 2, pp. 1200–1205, Jul. 2013, doi: 10. 1007/s13197-013-1035-6.
[36] S. Noichinda, K. Bodhipadma, S. Singkhornart, and S. Ketsa, “Changes in pectic substances and cell wall hydrolase enzymes of mangosteen (Garcinia mangostana) fruit during storage,” New Zealand Journal of Crop and Horticultural Science, vol. 35, no. 2, pp. 229–233, Feb. 2007, doi: 10.1080/01140670709510189.
[37] Z. Luo, X. Xu, and B. Yan, “Accumulation of lignin and involvement of enzymes in bamboo shoot during storage,” European Food Research and Technology, vol. 226, pp. 635–640, Feb. 2008, doi: 10.1007/s00217-007-0595-y.
[38] S. Noichinda, K. Bodhipadma, and D. W. M. Leung, “UV–C enhances phenolics metabolism and the production of the related bioactive compounds in green Chi–fah chili (Capsicum annuum L. cv. Chi–fah Kiaw) fruit,” Applied Science and Enginerring Progress, vol. 17, no. 3, Art. no. 7365, Jul. 2024, doi: 10.14416/j.asep. 2024.06.003.
[39] A. Tuladhar, S. Ohtsuka, and N. Nii, “Anatomical study of wax apple (Syzgium samarangense) root under flooded condition,” Acta Horticulturae, vol. 1110, pp. 85–90, Feb. 2016, doi: 10.17660/ActaHortic.2016.1110.13.
[40] A. Bunsiri, S. Ketsa, and R. E. Paull, “Phenolic metabolism and lignin biosynthesis in damaged pericarp of mangosteen fruit after impact,” Postharvest Biology and Technology, vol. 29, no. 1, pp. 61–71, Jul. 2003, doi: 10.1016/S0925-5214(02)00213-2.
[41] S. Noichinda, K. Bodhipadma, and C. Wongs-Aree, “Mangosteen,” in Postharvest Physiological Disorders in Fruits and Vegetables, S. T. de Freitas, and S. Pareek, Eds. Boca Raton, FL: CRC Press, 2019, pp. 589–613.
[42] C. Wongs-Aree, and S. Noichinda, “Glycolysis fermentative by–products and secondary metabolites involved in plant adaptation under hypoxia during pre– and postharvest,” in Hypoxia and Anoxia, K. Das, and M. S. Biradar Eds. London, UK: IntechOpen, 2018, pp. 59–72.
[43] R. C. Herner, and S. Ketsa, “Insight into the hardening of the pericarp of mangosteen fruit after impact,” Crop Science, vol. 65, May 2025, Art. no. e70071, doi: 10.1002/csc2.70071.
DOI: 10.14416/j.asep.2026.02.005
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







