Microbial Community Structure and Nitrogen in a Saline Filter Bioreactor Inoculated with Shrimp Pond Sludge
Abstract
Keywords
[1] Y. Zhou, Y. Zhu, J. Zhu, C. Li, and G. Chen, “A comprehensive review on wastewater nitrogen removal and its recovery processes,” International Journal of Environmental Research and Public Health, vol. 20, no. 4, p. 3429, 2023, doi: 10.3390/ijerph20043429.
[2] L. Zhang, L. Jiang, J. Zhang, J. Li, and Y. Peng, “Enhancing nitrogen removal through directly integrating anammox into mainstream wastewater treatment: Advantageous, issues and future study,” Bioresource Technology, vol. 362, p. 127827, Oct. 2022, doi: 10.1016/j.biortech.2022. 127827.
[3] S. Liu, C. Cai, F. Sun, M. Ma, T. An, and C. Chen, “Advanced nitrogen removal of landfill leachate treatment with anammox process: A critical review,” Journal of Water Process Engineering, vol. 58, p. 104756, Feb. 2024, doi: 10.1016/j.jwpe.2023.104756.
[4] D. Parde, M. Behera, R. R. Dash, and P. Bhunia, “A review on anammox processes: Strategies for enhancing bacterial growth and performance in wastewater treatment,” International Biodeterioration & Biodegradation, vol. 191, p. 105812, Jun. 2024, doi: 10.1016/j.ibiod.2024.105812.
[5] J. A. C. Roques et al., “Tolerance of the marine anammox candidatus scalindua to high nitrate concentrations: Implications for recirculating aquaculture systems,” Water (Switzerland), vol. 16, no. 24, Dec. 2024, doi: 10.3390/w16243705.
[6] I. N. Ismail et al., “Anammox process for aquaculture wastewater treatment: Operational condition, mechanism, and future prospective,” Water Science and Technology, vol. 86, no. 12, pp. 3093–3112, Dec. 2022, doi: 10.2166/wst. 2022.403.
[7] X. Ji, Y. Wang, and P.-H. Lee, “Evolution of microbial dynamics with the introduction of real seawater portions in a low-strength feeding anammox process,” Applied Microbiology and Biotechnology, vol. 104, pp. 5593–5604, Apr. 2020, doi: 10.1007/s00253-020-10598-9.
[8] Zulkarnaini, Q. Yujie, R. Yamamoto-Ikemoto, and N. Matsuura, “One-stage nitritation/ anammox process using a biofilm reactor with two-inflow,” Journal of Water and Environment Technology, vol. 16, no. 2, pp. 106–114, 2018, doi: 10.2965/jwet.17-050.
[9] G. Gumelar, E. N. Zainuddin, and Z. Zulkarnaini, “Fast start-up marine anammox process using intensive shrimp pond solid waste as inoculum in filter bioreactor,” Journal of Sustainability Science and Management, vol. 19, no. 1, pp. 55–62, 2024.
[10] N. Yokota et al., “High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor,” Applied Microbiology and Biotechnology, vol. 102, no. 3, pp. 1501–1512, Feb. 2018, doi: 10.1007/s00253-017-8663-0.
[11] F. Lulrahman, S. Silvia, and Z. Zulkarnaini, “Nitrogen removal by anammox process using sludge from muara penjalinan of padang city as inoculum,” Jurnal Teknologi Lingkungan, vol. 23, no. 2, pp. 143–150, 2022, doi: 10.29122/ jtl.v23i2.5284.
[12] I. N. Ismail, “Development of anaerobic ammonium oxidation (anammox) process reactor for aquaculture wastewater treatment,” Universiti Malaysia Terengganu, 2022.
[13] G. Gumelar, E. Zainuddin, and Z. Zulkarnaini, “Anaerobic ammonium oxidation performance in shrimp pond wastewater treatment,” Andalasian International Journal of Applied Science, Engineering and Technology, vol. 02, no. 02, pp. 51–56, 2022, doi: 10.25077/aijaset. v2i1.41.
[14] T. Lotti, R. Kleerebezem, C. Lubello, and M. C. M. C. M. M. van Loosdrecht, “Physiological and kinetic characterization of a suspended cell anammox culture,” Water Research, vol. 60, pp. 1–14, Sep. 2014, doi: 10.1016/j.watres.2014.04. 017.
[15] L. Zhang, M. Liu, S. Zhang, Y. Yang, and Y. Peng, “Integrated fixed-biofilm activated sludge reactor as a powerful tool to enrich anammox biofilm and granular sludge,” Chemosphere, vol. 140, pp. 114–118, Dec. 2015, doi: 10.1016/ j.chemosphere.2015.02.001.
[16] APHA, Standard Methods for the Examination of Water and Wastewater, 23rd ed., Washington, DC: American Public Health Association, 2017.
[17] K. Koike, G. J. Smith, R. Yamamoto-Ikemoto, S. Lücker, and N. Matsuura, “Distinct comammox Nitrospira catalyze ammonia oxidation in a full-scale groundwater treatment bioreactor under copper limited conditions,” Water Research, vol. 210, Feb. 2022, doi: 10.1016/j.watres.2021. 117986.
[18] W. Ludwig et al., “ARB: A software environment for sequence data,” Nucleic Acids Research, vol. 32, no. 4, pp. 1363–1371, 2004, doi: 10.1093/nar/gkh293.
[19] L. V. Duc, B. Song, H. Ito, T. Hama, M. Otani, and Y. Kawagoshi, “High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment,” Chemosphere, vol. 196, pp. 69–77, Apr. 2018, doi: 10.1016/j.chemosphere.2017.12. 159.
[20] Y. Kawagoshi, Y. Nakamura, H. Kawashima, K. Fujisaki, K. Furukawa, and A. Fujimoto, “Enrichment of marine anammox bacteria from seawater-related samples and bacterial community study,” Water Science and Technology, vol. 61, no. 1, pp. 119–126, 2010, doi: 10.2166/wst. 2010.796.
[21] M. Ali, D. R. Shaw, M. Albertsen, and P. E. Saikaly, “Comparative genome-centric analysis of freshwater and marine anammox cultures suggests functional redundancy in nitrogen removal processes,” Frontiers in Microbiology, vol. 11, Jul. 2020, doi: 10.3389/fmicb.2020.01637.
[22] Y. Kawagoshi, K. Fujisaki, Y. Tomoshige, K. Yamashiro, and Y. Qiao, “Temperature effect on nitrogen removal performance and bacterial community in culture of marine anammox bacteria derived from sea-based waste disposal site,” Journal of Bioscience and Bioengineering, vol. 113, no. 4, pp. 515–520, Apr. 2012, doi: 10.1016/j.jbiosc.2011.11.024.
[23] A. Oren, G. M. Garrity, and O. Garrity, “Valid publication of the names of forty-two phyla of prokaryotes,” International Journal of Systematic and Evolutionary Microbiology, vol. 71, p. 5056, 2021, doi: 10.1099/ijsem.0.005056.
[24] X. D. Wang, Y. Y. Wang, S. K. Song, W. G. Wang, M. Wu, and D. L. Wang, “Impact of salinity on the performance and microbial community of anaerobic ammonia oxidation (anammox) using 16s rRNA high-throughput sequencing technology,” Global Nest Journal, vol. 19, no. 3, pp. 377–388, Nov. 2017, doi: 10.30955/GNJ.002207.
[25] V. F. Dsane, S. An, M. K. Shahid, and Y. Choi, “From freshwater anammox bacteria (FAB) to marine anammox bacteria (MAB): A stepwise salinity acclimation process,” Science of the Total Environment, vol. 796, Nov. 2021, doi: 10.1016/J.SCITOTENV.2021.148753.
[26] V. F. Dsane, S. An, T. Oh, J. Hwang, Y. Choi, and Y. Choi, “Saline conditions effect on the performance and stress index of anaerobic ammonium oxidizing (anammox) bacteria,” Chemosphere, vol. 267, Mar. 2020, doi: 10.1016/J.CHEMOSPHERE.2020.129227.
[27] A. D. Pereira, A. Cabezas, C. Etchebehere, C. A. de L. Chernicharo, and J. C. de Araújo, “Microbial communities in anammox reactors: A review,” Environmental Technology Reviews, vol. 6, no. 1 pp. 74–73, Jan. 2017, doi: 10.1080/21622515.2017.1304457.
[28] D. J. Steele, D. J. Franklin, and G. J. C. Underwood, “Protection of cells from salinity stress by extracellular polymeric substances in diatom biofilms,” Biofouling, vol. 30, no. 8, pp. 987–998, Sep. 2014, doi: 10.1080/08927014. 2014.960859.
[29] A. Banerjee, S. Sarkar, S. Cuadros-Orellana, and R. Bandopadhyay, “Exopolysaccharides and biofilms in mitigating salinity stress: The biotechnological potential of halophilic and soil-inhabiting PGPR microorganisms,” Springer, Cham, 2019, pp. 133–153, doi: 10.1007/978-3-030-18975-4_6.
[30] W. A. Alhoqail, “Exopolysaccharide-Producing PGPR: Mechanisms for alleviating salinity-induced plant stress,” Polish Journal of Environmental Studies, pp. 1–18, Mar. 2025, doi: 10.15244/PJOES/196747.
[31] Y. Zhou, Q. Wen, C. Pang, Z. Wang, and Z. Chen, “Performance and adaptation mechanisms of Anammox granular sludge under salinity stress: Role of EPS, microbial community and functional genes,” Chemical Engineering Journal, vol. 514, p. 163185, Jun. 2025, doi: 10.1016/J.CEJ.2025.163185.
[32] L. V. Duc, B. Song, H. Ito, T. Hama, M. Otani, and Y. Kawagoshi, “High growth potential and nitrogen removal performance of marine anammox bacteria in shrimp-aquaculture sediment,” Chemosphere, vol. 196, pp. 69–77, Apr. 2018, doi: 10.1016/j.chemosphere.2017.12. 159.
[33] N. Yokota et al., “High-rate nitrogen removal from waste brine by marine anammox bacteria in a pilot-scale UASB reactor,” Applied Microbiology and Biotechnology vol. 102, no. 3, pp. 1501–1512, 2018, doi: 10.1007/s00253-017-8663-0.DOI: 10.14416/j.asep.2026.02.004
Refbacks
- There are currently no refbacks.
Applied Science and Engineering Progress







