Page Header

การจำแนกชนิดเหล็กกล้าคาร์บอนด้วยเทคนิคทดสอบประกายไฟโดยวิธีจำแนกคุณลักษณะของแมชชีนเลิร์นนิ่งด้วยภาพถ่าย
Classification of Carbon Steels by Automated Spark Test Technique Using Feature Extraction Based on Machine Learning Image Processing

Teerawat Benjawilaikul, Thossaporn Kaewwichit

Abstract


การทดสอบเพื่อจำแนกชนิดของเหล็กกล้านั้นสามารถทำได้หลายวิธี หนึ่งในวิธีการทดสอบเพื่อจำแนกชนิดของเหล็กกล้าคือ การทดสอบผ่านเครื่องอีมิสชั่นสเปคโตรมิเตอร์ (Emission Spectrometer) การทดสอบด้วยวิธีนี้ยังมีข้อจำกัดคือ ใช้ระยะเวลาในการเตรียมชิ้นงานทดสอบและมีค่าใช้จ่ายที่สูง การทดสอบเพื่อจำแนกชนิดของเหล็กกล้านั้นยังมีอีกหนึ่งวิธีที่สามารถจำแนกได้ นั่นคือการทดสอบประกายไฟ (Spark Test) แต่การทดสอบวิธีนี้ยังคงต้องใช้ความรู้ ความชำนาญและทักษะของผู้ทดสอบจึงยังไม่เป็นที่นิยมมากนัก ข้อดีของวิธีการทดสอบด้วยวิธีนี้คือ ขั้นตอนการทดสอบไม่ซับซ้อน ใช้เวลาในการทดสอบไม่นานและทำได้ง่าย งานวิจัยนี้จึงได้นำหลักการจำแนกชนิดของเหล็กกล้าคาร์บอนด้วยเทคนิคทดสอบประกายไฟมาใช้โดยจำแนกคุณลักษณะของแมชชีนเลิร์นนิ่ง (Machine Learning) ด้วยภาพถ่ายตามมาตรฐาน JIS G 0566 ในการทดลองพบว่าสามารถจำแนกเหล็กกล้ากลุ่มเหล็กกล้าคาร์บอนต่ำได้ความแม่นยำ 100% สามารถจำแนกเหล็กกล้ากลุ่มเหล็กกล้าคาร์บอนปานกลางได้แม่นยำ 95% และสามารถจำแนกเหล็กกล้ากลุ่มเหล็กกล้าคาร์บอนสูงได้แม่นยำ 90%

There are several methods of steel classification testing. The test through an emission spectrometer is one of the test methods for classifying steel. However, there are limitations involved in terms of time-consumption andcost-effectiveness in this method. The spark test is another method to classify steel, but this method still requires the knowledge and proficiency skills of the tester. Hence, this method is not very popular. The advantage of this analysis is that the testing process is not complicated and easy to do. However, the spark test requires high proficiency skills in classifying metals. This research applied the principle of steel classification to analyze the spark characteristics by categorizing metal groups using the machine learning characteristics according to JIS G 0566 standard. The results showed that low carbon steel was classified with an accuracy of 100%, medium carbon steel was classified with an accuracy of 95%, and high carbon steel was classified with an accuracy of 90%.

Keywords: การทดสอบประกายไฟ;JIS G 0566; การประมวลผลด้วยภาพ; แมชชีนเลิร์นนิ่ง; Spark Testing; JIS G 0566; Image Processing; Machine Learning


[1]JIS G 0566, Method of Spark Test for Steels, 1980.

[2] S. Wongsa-ad, S. Wattanasriyakul andP. Jenkittiyon, The development of spark testing for steel identify by digital photographing, Industrial Engineering Network Conference 2007, Proceeding, 2007, 1364-1369. (In Thai)

[3]J. La-or and S. Wattanasriyakul, The feasibility study steels identification with spark test image analysis by image processing technique and neural network, Industrial Engineering Network Conference 2008, Proceeding, 2008, 870-875. (in Thai)

[4]P. Rienpradub, S. Wattanasriyakul andP. Jenkittiyon, Application of web camera technique for steel identification using spark test, The Journal of Industrial Technology, 2013, 9(1), 49-58. (in Thai)

[5]T. Nakata, Development of automated spark testing technique by image processing to measure carbon content in steel materials, Automation in the Mining, Mineral and Metal Industries 2013, Proceeding, 2013, 118-119.

[6]T. Dalke, J. Brink and M. Weller, Material determination using spark observation, Global Journal of Engineering Education, 2013, 15(3), 165-170.

[7]K.H. Rawani, S.V. Painjane, A.P. Salunkhe,S.S. Patil, S.S. Dharmarao, and P. Deshpande, Experimental analysis and determination of various plain carbon steel by using spark test, International Journal of Research Publications in Engineering and Technology, 2017, 3(4), 123-128.

[8]R.W. Picard, E. Vyzas and J. Healey, Toward machine emotional intelligence: Analysis of affective physiological state, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(10),       1175-1191.

[9]T.F. Bastos-Filho, A. Ferreira, A.C. Atencio, S. Arjunan and D. Kumar, Evaluation of feature extraction techniques in emotional state recognition, The 4th International Conference on Intelligent Human Computer Interaction (IHCI), Proceeding, 2012, 1-6.

[10]B. Bataineh, S.N.H.S. Abdullah, K. Omar, A novel Statistical Feature Extraction Method for Textual Images: Optical Font Recognition, Expert System with Applications, 2012, 39(5), 5470-5477.

[11]N. Elavarasan and K. Mani, A survey on feature extraction techniques, International Journal of Innovation Research in Computer and Communication Engineering, 2015, 3, 52-55.

[12]M.A. Mohammed, K.H. Abdulkareem, B. Garcia-Zapirain, S.A. Mostafa, M.S. Maashi, A.S. Al-Waisy, M.A. Subhi, A.A. Mutlag and D. Le, A comprehensive investigation of machine learning feature extraction and classification methods for automated diagnosis of COVID-19 based on x-ray images, Computers, Materials and Continua, 2021, 66(3), 3289-3310.

[13]M. AlQuraishi, Machine learning in protein structure prediction, Current Opinion in Chemical Biology, 2021, 65, 1-8.

[14]www.mathworks.com/help/matlab/ref/rgb2gray.html. (Accessed on 29 December 2021)

Full Text: PDF

DOI: 10.14416/j.ind.tech.2022.08.005

Refbacks

  • There are currently no refbacks.