Page Header

Bioactive Constituent and Eugenol Synthase 1 Gene of Thai Red Holy Basil (Ocimum tenuiflorum L.)

Siriporn Sripinyowanich, Wiboonwan Soipetch, Pariya Maneeprasert, Noppamart Lokkamlue, Siriluck lamtham, Chareerat Mongkolsiriwatana


Red holy basil (Ocimum tenuiflorum L.) is a commonly grown herb crop with diverse cultivars/accessions that contain highly ranked bioactive substances for medicinal potentialities. In this study, bioactive constituents and eugenol synthase 1 (EGS1) were characterized in Thai red holy basil. The compositions of the bioactive distilled from dried and fresh leaves and dried flower spikes were determined using headspace–solid phase microextraction–gas chromatography. Furthermore, a full-length of putative EGS1 was cloned from Thai red holy basil leaf tissue. The open reading frame of EGS1 contained 945 bp and encoded a 314-amino acid sequence. Phylogenetic analysis clearly distinguished two homology classes of EGS. EGS1 of red holy basil was closely related to that of white holy basil and lemon basil. Additionally, EGS1 expression in leaf tissue at the flowering stage was further assessed in ten local red holy basil accessions. EGS1 transcript levels were high, especially in aroma-rich accessions. EGS1 was expressed at higher levels in leaves than in flower spikes. Our study characterizes red holy basil in terms of both biochemical and gene information. This information can be used for further studies focusing on gene editing to increase the production of high-quality Thai red holy basil for the food and pharmacological industries.


[1] N. Ngamakeue and P. Chitprasert, “Encapsulation of holy basil essential oil in gelatin: Effects of palmitic acid in carboxymethyl cellulose emulsion coating on antioxidant and antimicrobial activities,” Food and Bioprocess Technology, vol. 9, no. 10, pp. 1735–1745, 2016.

[2] N. Singh, Y. Hoette, and D. R. Miller, Tulsi: The Mother Medicine of Nature. India: Organic India, 2002.

[3] A. P. Raina, A. Kumar, and M. Dutta, “Chemical characterization of aroma compounds in essential oil isolated from “Holy Basil” (Ocimum tenuiflorum L.) grown in India,” Genetic Resources and Crop Evolution, vol. 60, no. 5, pp. 1727–1735, 2013.

[4] M. Marotti, R. Piccaglia, and E. Giovanelli, “Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics,” Journal of Agricultural and Food Chemistry, vol. 44, pp. 3926–3929, 1996.

[5] T. Koeduka, E. Fridman, D. R. Gang, D. G. Vassão, B. L. Jackson, C. M. Kish, I. Orlova, S. M. Spassova, N. G. Lewis, J. P. Noel, T. J. Baiga, N. Dudareva, and E. Pichersky, “Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester,” Proceedings of the National Academy of Sciences, vol. 103, no. 26, pp. 10128– 10133, 2006.

[6] D. R. Gang, J. Wang, N. Dudareva, K. H. Nam, J. E. Simon, E. Lewinsohn, and E. Pichersky, “An investigation of the storage and biosynthesis of phenylpropenes in sweet basil,” Plant Physiology, vol. 125, no. 2, pp. 539–555, 2001.

[7] J. N. Barboza, C. da S. M. B. Filho, R. O. Silva, J. V. R. Medeiros, and D. P. de Sousa, “An overview on the anti-inflammatory potential and antioxidant profile of eugenol,” Oxidative Medicine and Cellular Longevity, vol. 2018, 2018, Art. no. 3957262.

[8] K. Carović-Stanko, S. Orlić, O. Politeo, F. Strikić, I. Kolak, M. Milos, and Z. Satovic, “Composition and antibacterial activities of essential oils of seven Ocimum taxa,” Food Chemistry, vol. 119, no. 1, pp. 196–201, 2010.

[9] E. Dervis, A. Yurt Kilcar, I. Medine, V. Tekin, B. Cetkin, E. Uygur, and F. Muftuler, “In vitro incorporation of radioiodinated eugenol on adenocarcinoma cell lines (Caco2, MCF7, and PC3),” Cancer Biotherapy and Radiopharmaceuticals, vol. 32, no. 3, pp. 75–81, 2017.

[10] R. K. Jaggi, R. Madaan, and B. Singh, “Anticonvulsant potential of holy basil, Ocimum sanctum Linn., and its cultures,” Indian Journal of Experimental Biology, vol. 41, pp. 1329–1333, 2003.

[11] P. Singh, R. H. Jayaramaiah, S. Agawane, V. Garikapati, A. M. Korwar, A. Anand, V. S. Dhaygude, M. L. Shaikh, R. S. Joshi, R. Boppana, M. J. Kulkarni, H. V. Thulasiram, and A. P. Giri, “Potential dual role of eugenol in inhibiting advanced glycation end products in diabetes: Proteomic and mechanistic insights,” Scientific Reports, vol. 6, 2016, Art. no. 18798.

[12] H. A. Yamani, E. C. Pang, N. Mantri, and M. A. Deighton, “Antimicrobial activity of Tulsi (Ocimum tenuiflorum) essential oil and their major constituents against three species of bacteria,” Frontiers in Microbiology, vol. 7, Art. no. 681, 2016.

[13] K. Chaieb, H. Hajlaoui, T. Zmantar, A. Nakbi, M. Rouabhia, M. Kacem, and A. Bakhrouf, “The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): A short review,” Phytotherapy Research, vol. 21, no. 6, pp. 501–506, 2007.

[14] D. Zabaras and S. Wyllie, “The effect of mechanical wounding on the composition of essential oil from Ocimum Minimum L. leaves,” Molecules, vol. 6, no. 2, pp. 79–81, 2001.

[15] S. Rastogi, S. Meena, A. Bhattacharya, S. Ghosh, R. K. Shukla, N. S. Sangwan, R. K. Lal, M. M. Gupta, U. C. Lavania, V. Gupta, D. A. Nagegowda, and A. K. Shasany, “De novo sequencing and comparative analysis of holy and sweet basil transcriptomes,” BMC Genomics, vol. 15, no. 1, Art. no. 588, 2014.

[16] A. Anand, R. H. Jayaramaiah, S. D. Beedkar, P. A. Singh, R. S. Joshi, F. A. Mulani, B. B. Dholakia, S. A. Punekar, W. N. Gade, H. V. Thulasiram, A. P. Giri, “Comparative functional characterization of eugenol synthase from four different Ocimum species: Implications on eugenol accumulation,” Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, vol. 1864, no. 11, pp. 1539– 1547, 2016.

[17] H . Yan, S. Baudino, J. C. Caissard, F. Nicolè, H. Zhang, K. Tang, S. Li, and S, Lu, “Functional characterization of the eugenol synthase gene (RcEGS1) in rose,” Plant Physiology and Biochemistry, vol. 129, pp. 21–26, 2018.

[18] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, vol. 215, no. 3, pp. 403–410, 1990.

[19] S. Pundir, M. J. Martin, and C. O'Donovan, “UniProt ools,” Current Protocols in Bioinformatics, vol. 53, pp. 1.29.1–1.29.15, 2016.

[20] P. H. A. Sneath and R. R. Sokal, Numerical Taxonomy. The Principles and Practice of Numerical Classification. USA: W. H. Freeman and Company 1973.

[21] J. Felsenstein, “Confidence limits on phylogenies: An approach using the bootstrap,” Evolution, vol. 39, no. 4, pp. 783–791, 1985.

[22] M. Nei and S. Kumar, Molecular Evolution and Phylogenetics. Oxford: Oxford University Press, 2000.

[23] K. Tamura, G. Stecher, and S. Kumar, “MEGA11: Molecular evolutionary genetics analysis version 11,” Molecular Biology and Evolution, vol. 38, no. 7, pp. 3022–3027, 2021.

[24] T. Czechowski, M. Stitt, T. Altmann, M. K. Udvardi, and W. R. Scheible, “Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis,” Plant Physiology, vol. 139, no. 1, pp. 5–17, 2005.

[25] P. Chutimanukul, H. Jindamol, A. Thongtip, S. Korinsak, K. Romyanon, T. Toojinda, C. T. Darwell, P. Wanichananan, A. Panya, W. Kaewsri, A. Auvuchanon, K. Mosaleeyanon, and P. Chutimanukul, “Physiological responses and variation in secondary metabolite content among Thai holy basil cultivars (Ocimum tenuiflorum L.) grown under controlled environmental conditions in a plant factory,” Frontiers in Plant Science, vol. 13, pp. 1–19, 2022.

[26] T. Tangpao, H. H. Chung, and S. R. Sommano, “Aromatic profiles of essential oils from five commonly used Thai basils,” Foods, vol. 7, no. 11, 2018, Art. no. 175.

[27] D. N. Mokat and T. D. Kharat, “Essential oil composition in leaves of ocimum species found in Western Maharashtra, India,” Journal of Essential Oil Bearing Plants, vol. 25, no. 1, pp. 1–8, 2022.

[28] A. Raina, A. Kumar, and M. Dutta, “Chemical characterization of aroma compounds in essential oil isolated from “Holy Basil” (Ocimum tenuiflorum L.) grown in India,” Genetic Resources and Crop Evolution, vol. 60, pp. 1727–1735, 2013.

[29] S. Rastogi, S. Shah, R. Kumar, D. Vashisth, M. Q. Akhtar, A. Kumar, U. N. Dwivedi, and A. K. Shasany, “Ocimum metabolomics in response to abiotic stresses: Cold, flood, drought and salinity,” Plos One, vol. 14, no. 2, Art. no. e0210903, 2019.

[30] K. Khalid, “Influence of water stress on growth, essential oil, and chemical composition of herbs (Ocimum sp.),” International Agrophysics, vol. 20, no. 4, pp. 289–296, 2006.

[31] V. A. Reddy, C. Li, K. Nadimuthu, J. G. Tjhang, I.-C. Jang, and S. Rajani, “Sweet basil has distinct synthases for eugenol biosynthesis in glandular trichomes and roots with different regulatory mechanisms,” International Journal of Molecular Sciences, vol. 22, no. 2, pp. 681, 2021.

[32] C. T. Nguyen, N. H. Nguyen, W. Choi, J. H. Lee, and J. Cheong, “Biosynthesis of essential oil compounds in Ocimum tenuiflorum is induced by abiotic stresses,” An International Journal Dealing with all Aspects of Plant Biology, vol. 156, no. 2, pp. 353–357, 2020.

[33] J. C. O. Alves, G. F. Ferreira, J. R. Santos, L. C. N. Silva, J. F. S. Rodrigues, W. R. N. Neto, E. I. Farah, Á. R. C. Santos, B. S. Mendes, L. V. N. F. Sousa, A. S. Monteiro, V. L. D. Santos, D. A. Santos, A. C. Perez, T. R. L. Romero, Â. M. L. Denadai, and L. S. Guzzo, “Eugenol induces phenotypic alterations and increases the oxidative burst in cryptococcus,” Frontiers in Microbiology, vol. 8, pp. 1–12, 2017.

[34] G. V. Louie, T. J. Baiga, M. E. Bowman, T. Koeduka, J. H. Taylor, S. M. Spassova, E. Pichersky, and J. P. Noel, “Structure and reaction mechanism of Basil Eugenol synthase,” Plos One, vol. 2, no. 10, p. e993, 2007.

[35] A. Singh, S. Dwivedi, S. Bharti, A. Srivastava, V. Singh, and S. Khanuja, “Phylogenetic relationships as in Ocimum revealed by RAPD markers,” Euphytica, vol. 136, pp. 11–20, 2004.

[36] I. Aragüez, S. Osorio, T. Hoffmann, J. L. Rambla, N. Medina-Escobar, A. Granell, M. Á. Botella, W. Schwab, and V. Valpuesta, “Eugenol production in achenes and receptacles of strawberry fruits is catalyzed by synthases exhibiting distinct kinetics,” Plant Physiology, vol. 163, no. 2, pp. 946–958, 2013.

Full Text: PDF

DOI: 10.14416/j.asep.2023.04.001


  • There are currently no refbacks.