Page Header

Removal of Propylparaben in an Aqueous System using Magnetite-Silica Ferrofluids of Hydrophobic Deep Eutectic Solvent

Aswin Falahudin, Numpon Insin


A novel sorbent based on ferrofluid hydrophobic deep eutectic solvent magnetite silica (Fe3O4@SiO2@mSiO2- HDES) was successfully synthesized by adding menthol-fatty acid as carrier liquid onto Fe3O4@SiO2@mSiO2 composite. The crystallinity, morphological, functional group and magnetic properties of the materials were characterized by x-ray diffraction, scanning electron microscopy-EDX, Brunauer–Emmett–Teller, vibrating sample magnetometer, thermogravimetric analysis and Fourier Transform-infrared spectroscopy. The adsorption performance of parabens was evaluated as model water pollutants. The Fe3O4@SiO2@mSiO2-HDES ferrofluid was used as a ferrofluid sorbent of parabens prior to spectrophotometry UV-Vis. The effect of several contribution parameters was optimized including ferrofluid volume, pH, stirring time and ionic strength. Under the optimum conditions, a combination of Fe3O4@SiO2@mSiO2-menthol/palmitic acid was achieved as the best ferrofluid with % removal values ranging from 81.00% to 98.62%. The ferrofluid Fe3O4@SiO2@mSiO2-HDES demonstrated high efficiency for the adsorption paraben in the water system which suggests a great potential alternative method for the adsorption of water contaminants in the aquatic system.


[1] M. de los Á. B. del H. Bueno, N. Boluda‑Botella, and D. P. Rico, “Removal of emerging pollutants in water treatment plants: Adsorption of methyl and propylparaben onto powdered activated carbon,” Adsorption, vol. 25, no. 5, pp. 983–999, 2019, doi: 10.1007/s10450-019-00120-7.


[2] P. Gupta and K. Pushkala, “Parabens: The love-hate molecule,” Clinical Journal of Obstetrics and Gynecology, vol. 3, no. 1, pp. 037–038, 2020, doi: 10.29328/journal.cjog.1001047.


[3] Z. Petric, J. Ruzic, and I. Zuntar, “The controversies of parabens–An overview nowadays,” Acta Pharmaceutica, vol. 71, pp. 17–32, 2021, doi: 10.2478/acph-2021-0001.


[4] K. Nowaka, W. Ratajczak–Wronaa, M. Górskab, and E. Jabłońskaa, “Parabens and their effects on the endocrine system,” Molecular and Cellular Endocrinology, vol. 474, pp. 238–251, 2018, doi: 10.1016/j.mce.2018.03.014.


[5] J. Kapelewska, U. Kotowska, J. Karpińska, D. Kowalczuk, A. Arciszewska, and A. Świrydo, “Occurrence, removal, mass loading, and environmental risk assessment of emerging organic contaminants in leachates, groundwaters, and wastewaters,” Microchemical Journal, vol. 137, pp. 292–301, 2018, doi: 10.1016/j.microc.2017.11.008.


[6] E. Carmona, V. Andreu, and Y. Picó, “Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water,” Science of the Total Environment, vol. 484, pp. 53–63, 2014, doi: 10.1016/j.scitotenv. 2014.02.085.


[7] A. M. C. Ferreira, M. Möder, and M. E. F. Laespada, “GC-MS determination of parabens, triclosan and methyl triclosan in water by in situ derivatisation and stir-bar sorptive extraction,” Analytical and Bioanalytical Chemistry, vol. 399, pp. 945–953, 2011, doi: 10.1007/ s00216-010-4339-7.


[8] X. Zhaoa, W. Qiu, Y. Zheng, J. Xiong, C. Gao, and S. Hu, “Occurrence, distribution, bioaccumulation, and ecological risk of bisphenol analogues, parabens, and their metabolites in the Pearl River Estuary, South China,” Ecotoxicology and Environmental Safety, vol. 180, pp. 43–52, 2019, doi: 10.1016/j.ecoenv.2019.04.083.


[9] G. Guo, Y. Wang, T. Hao, D. Wu, and G. H. Chen, “Enzymatic nitrous oxide emissions from wastewater treatment,” Frontries of Environmental Science and Engineering, vol. 12, no. 1, pp. 1–12, 2018, doi: 10.1007/s11783-018-1021-3.


[10] A. A. Basfar and F. A. Rehim, “Disinfection of wastewater from a Riyadh wastewater treatment plant with ionizing radiation,” Radiation Physics and Chemistry, vol. 65, no. 4–5, pp. 527–532, 2002, doi: 10.1016/S0969-806X(02)00346-8.


[11] J. H. Luo, J. Li, Y. B. Qi, and Y. Q. Cao, “Study on the removal of chromium(III) by solvent extraction,” Desalination and Water Treatment, vol. 51, no. 10–12, pp. 2130–2134, 2013, doi: 10.1080/19443994.2012.735404.


[12] F. Chen, M. Lv, Y. Ye, S. Miao, X. Tang, Y. Liu, B. Liang, Z. Qin, Y. Chen, Z. He, and Y. Wang, “Insights on uranium removal by ion exchange columns: The deactivation mechanisms, and an overlooked biological pathway,” Chemical Engineering Journal, vol. 434, 2022, Art. no. 134708, doi: 10.1016/j.cej.2022.134708.


[13] A. Pohl, “Removal of heavy metal ions from water and wastewaters by sulfur-containing precipitation agents,” Water, Air, and Soil Pollution, vol. 231, no. 10, pp. 1–17, 2020, doi: 10.1007/s11270-020-04863-w.


[14] M. Darvishmotevallia, A. Zarei, M. Moradnia, M. Noorisepehr, and H. Mohammadi, “Optimization of saline wastewater treatment using electrochemical oxidation process: Prediction by RSM method,” MethodsX, vol. 6, pp. 1101– 1113, 2019, doi: 10.1016/j.mex.2019.03.015.


[15] Z. Sun, D. Huang, X. Duan, W. Honga, and J. Lianga, “Functionalized nanoflower-like hydroxyl magnesium silicate for effective adsorption of aflatoxin B1,” Journal of Hazardous Materials, vol. 387, 2020, doi: 10.1016/j.jhazmat. 2019.121792.


[16] X. Zhao, L. Liu, N. Li, T. Wang, Y. Chai, Z. Yang, J. Ye, Q. Chu, and L. Chen, “Zeolite silica nanoparticles-supported open-tubular columns for isomer and chiral separation using capillary electrochromatography coupled with amperometric detection,” New Journal of Chemistry, vol. 44, no. 3, pp. 1028–1035, 2020, doi: 10.1039/c9nj04859f.


[17] P. González-Hernández, A. Gutiérrez-Serpa, A. B. Lago, L. Estévez, J. H. Ayala, V. Pino, and J. Pasán, “Insights into paraben adsorption by metal-organic frameworks for analytical applications,” ACS Applied Materials and Interfaces, vol. 13, no. 38, pp. 45639–45650, 2021, doi: 10.1021/acsami.1c14416.


[18] A. Duque, J. Grau, J. L. Benede, R. M. Alonso, M. A. Campanero, and A. Chisvert, “Low toxicity deep eutectic solvent-based ferrofluid for the determination of UV filters in environmental waters by stir bar dispersive liquid microextraction,” Talanta, vol. 243, pp. 1–10, 2022, doi: 10.1016/j. talanta.2022.123378.


[19] L. Shen, Y. Qiao, Y. Guo, S. Meng, G. Yang, M. Wu, and J. Zhao, “Facile co-precipitation synthesis of shape-controlled magnetite nanoparticles,” Ceramics International, vol. 40, no. 1, pp. 1519–1524, 2014, doi: 10.1016/j.ceramint. 2013.07.037.


[20] J. F. Liu, Z. S. Zhao, and G. B. Jiang, “Coating Fe3O4 magnetic nanoparticles with humic acid for high efficient removal of heavy metals in water,” Environmental Science and Technology, vol. 42, no. 18, pp. 6949–6954, 2008, doi: 10.1021/es800924c.


[21] K. Xu, Y. Wang, Y. Li, Y. Lin, H. Zhang, and Y. Zhou, “A novel poly(deep eutectic solvent)- based magnetic silica composite for solid-phase extraction of trypsin,” Analytica Chimica Acta, vol. 946, pp. 64–72, 2016, doi: 10.1016/j. aca.2016.10.021.


[22] H. Lu, and S. Xu, “Mesoporous structured estrone imprinted Fe3O4@SiO2@mSiO2 for highly sensitive and selective detection of estrogens from water samples by HPLC,” Talanta, vol. 144, pp. 303–311, 2015, doi: 10.1016/j.talanta.2015.06.017.


[23] F. Mehrabi, M. Ghaedi, and E. A. Dil, “Magnetic nanofluid based on hydrophobic deep eutectic solvent for efficient and rapid enrichment and subsequent determination of cinnamic acid in juice samples: Vortex-assisted liquid-phase microextraction,” Talanta, vol. 260, 2023, Art. no. 124581, doi: 10.1016/j.talanta.2023. 124581.


[24] T. Gu, M. Zhang, J. Chen, and H. Qiu, “A novel green approach for the chemical modification of silica particles based on deep eutectic solvents,” Chemical Communications, vol. 51, no. 48, pp. 9825–9828, 2015, doi: 10.1039/c5cc02553b.


[25] D. Jose, A. Tawai, D. Divakaran, D. Bhattacharyya, P. Venkatachalam, P. Tantayotai, and M. Sriariyanun, “Integration of deep eutectic solvent in biorefining process of lignocellulosic biomass valorization,” Bioresource Technology Reports, vol. 21, 2023, Art. no. 101365, doi: 10.1016/j. biteb.2023.101365.


[26] C. Florindo, L. C. Branco, and I. M. Marrucho, “Development of hydrophobic deep eutectic solvents for extraction of pesticides from aqueous environments,” Fluid Phase Equilibria, vol. 448, pp. 135–142, 2017.


[27] E. A. Dil, M. Ghaedi, A. Asfaram, L. Tayebi, and F. Mehrabi, “A ferrofluidic hydrophobic deep eutectic solvent for the extraction of doxycycline from urine, blood plasma and milk samples prior to its determination by high-performance liquid chromatography-ultraviolet,” Journal of Chromatograohy A, vol. 1613, 2020, Art. no. 460695, doi: 10.1016/j.chroma.2019.460695.


[28] Ö. Demir, “Synthesis of Fe3O4 magnetic nanoparticles, and investigation of removal capacity,” Journal of the Chemical Society Pakistan, vol. 40, no. 01, pp. 111–122, 2018, doi: 10.21175/


[29] S. Pirsa and F. Asadzadeh, “Synthesis of Fe3O4/ SiO2/Polypyrrole magnetic nanocomposite polymer powder: Investigation of structural properties, and ability to purify of edible sea salts,” Advanced Powder Technology, vol. 32, no. 4, pp. 1233–1246, 2021, doi: 10.1016/j. apt.2021.02.027.


[30] H. Tabasi, M. T. H. Mosavian, M. Darroudi, M. Khazaei, A. Hashemzadeh, and Z. Sabouri, “Synthesis and characterization of amine-functionalized Fe3O4/mesoporous silica nanoparticles (MSNs) as potential nanocarriers in drug delivery systems,” Journal of Porous Materials, vol. 29, no. 6, pp. 1817–1828, 2022, doi: 10.1007/s10934-022-01259-5.


[31] T. Kriížek, M. Bursová, R. Horsley, M. Kuchař, P. Tůma, R. Čabala, T. Hložek, “Menthol-based hydrophobic deep eutectic solvents: Towards greener and efficient extraction of phytocannabinoids,” Journal of Cleaner Production, vol. 193, pp. 391–396, 2018.


[32] W. M. Daoush, “Co-Precipitation and magnetic properties of magnetite nanoparticles for potential biomedical applications,” Journal of Nanomedicine Research, vol. 5, no. 1–6, 2017, doi: 10.15406/jnmr.2017.05.00118.


[33] G. Antarnusa, P. D. Jayanti, Y. R. Denny, and A. Suherman, “Utilization of co-precipitation method on synthesis of Fe3O4/PEG with different concentrations of PEG for biosensor applications,” Materialia, vol. 25, 2022, Art. no. 101525, doi: 10.1016/j.mtla.2022.101525.


[34] J. Ma, N. Sun, C. Wang, J. Xue, and L. Qiang, “Facile synthesis of novel Fe3O4@SiO2@ mSiO2@TiO2 core-shell microspheres with mesoporous structure and their photocatalytic performance,” Journal of Alloys and Compounds, vol. 743, pp. 456–463, 2018, doi: 10.1016/j. jallcom.2018.02.005.


[35] Y. Zhang, F. Jiang, D. Huang, S. Hou, H. Wang, M. Wang, Y. Chi, and Z. Zhao, “A facile route to magnetic mesoporous core-shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water,” RSC Advances, vol. 8, no. 55, pp. 31348–31357, 2018, doi: 10.1039/c8ra05781h.


[36] H. E. Ghandoor, H. M. Zidan, M. M. H. Khalil, and M. I. M. Ismail, “Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles,” International Journal of Electrochemical Science, vol. 7, pp. 5734–5745, 2012, doi: 10.1016/S1452-3981(23)19655-6.


[37] C. A. Dincer, N. Yıldız, N. Aydogan, and A. Calımlı, “A comparative study of Fe3O4 nanoparticles modified with different silane compounds,” Applied Surface Science, vol. 318, pp. 297–304, 2014, doi: 10.1016/j.apsusc. 2014.06.069.


[38] C. Ma, C. Li, N. He, F. Wang, N. Ma, L. Zhang, Z. Lu, Z. Ali, Z. Xi, X. Li, G. Liang, H. Liu, Y. Deng, L. Xu, and Z. Wang, “Preparation and characterization of monodisperse Core–Shell Fe3O4@SiO2 microspheres and its application for magnetic separation of nucleic acids from E. coli BL21,” Journal of Biomedical Nanotecnology, vol. 8, pp. 1000–1005, 2012, doi: 10.1166/ jbn.2012.1454.


[39] M. A. Mustafa, Q. A. Qasim, A. B. Mahdi, S. E. Izzar, Y. S. Alnassar, E. S. Abood, Z. J. Alhakim, Z. H. Mahmoud, A. M. Rheima, and H. N. K. Al-Salman, “Supercapacitor performance of Fe3O4, and Fe3O4@SiO2- bis(aminopyridine)-Cu hybrid nanocomposite,” International Journal of Electrochemical Science, vol. 17, no. 10, 2022, Art. no. 221057, doi: 10.20964/2022.10.49.


[40] Z. Lin, Y. Zhang, Q. Zhao, A. Chen, and B. Jiao, “Ultrasound-assisted dispersive liquid-phase microextraction by solidifying L-menthol-decanoic acid hydrophobic deep eutectic solvents for detection of five fungicides in fruit juices and tea drinks,” Journal of Separation Science, vol. 44, no. 20, pp. 3870–3882, 2021, doi: 10.1002/ jssc.202100590.


[41] R. E. A. Mohammad, A. A. Elbashir, J. Karim, N. Yahaya, N. Y. Rahim, and M. Miskam, “Development of deep eutectic solvents based ferrofluid for liquid phase microextraction of ofloxacin, and sparfloxacin in water samples,” Microchemical Journal, vol. 181, 2022, Art. no. 107806, doi: 10.1016/j.microc.2022.107806.


[42] H. Piao, Y. Jiang, Z. Qin, P. Ma, Y. Sun, X. Wang, D. Song, and Q. Fei, “Application of an in-situ formulated magnetic deep eutectic solvent for the determination of triazine herbicides in rice,” Talanta, vol. 222, 2021, Art. no. 121527, doi: 10.1016/j.talanta.2020.121527.


[43] H. R. Nodeha, H. Sereshtib, S. Ataolahib, A. Toloutehrani, and A. T. Ramezanib, “Activated carbon derived from pistachio hull biomass for the effective removal of parabens from aqueous solutions: isotherms, kinetics, and free energy studies,” Desalination and Water Treatment, vol. 201, pp. 155–164, 2020, doi: 10.5004/ dwt.2020.25985.


[44] D. Yanga, G. Li, L. Wu, and Y. Yanga, “Ferroflu­id-based liquid-phase microextraction: Analysis of four phenolic compounds in milks and fruit juices,” Food Chemistry, vol. 261, pp. 96–102, 2018, doi: 10.1016/j.foodchem.2018.04.038.


[45] N. Nouri and H. Sereshti, “Electrospun polymer composite nanofiber-based in-syringe solid phase extraction in tandem with dispersive liquid-liquid microextraction coupled with HPLC-FD for determination of aflatoxins in soybean,” Food Chemistry, vol. 289, pp. 33–39, 2019, doi: 10.1016/j.foodchem.2019.03.026.


[46] A. R. Zarei, M. Nedaei, and S. A. Ghorbanian, “Ferrofluid of magnetic clay and menthol based deep eutectic solvent: Application in directly suspended droplet microextraction for enrichment of some emerging contaminant explosives in water and soil samples,” Journal of Chromatography A, vol. 1553, pp. 32–42, 2018, doi: 10.1016/j.chroma.2018.04.023.


[47] J. M. Silva, C. V. Pereira, F. Mano, E. Silva, V. I. B. Castro, I. Sá-Nogueira, R. L. Reis, A. Paiva, A. A. Matias, and A. R. C. Duarte, “Therapeutic role of deep eutectic solvents based on menthol and saturated fatty acids on wound healing,” Applied Bio Materials, vol. 2, pp. 4346– 4355, 2019, doi: 10.1021/acsabm.9b00598.


[48] B. Kapalavavi, J. Ankney, M. Baucom, and Y. Yang, “Solubility of parabens in subcritical water,” Journal of Chemical and Engineering Data, vol. 59, no. 3, pp. 912–916, 2014, doi: 10.1021/je4010883.


[49] D. W. Zelinski, F. O. Farias, G. Oliveira, L. Igarashi-Mafra, and M. R. Mafra, “COSMO-SAC model and vortex assisted liquid-liquid microextraction to assess the hydrophobic deep eutectic solvents as an alternative path for parabens removal from aqueous media,” Fluid Phase Equilibria, vol. 560, 2022, Art. no. 113503, doi: 10.1016/j.fluid.2022.113503.

Full Text: PDF

DOI: 10.14416/j.asep.2024.03.001


  • There are currently no refbacks.