การประยุกต์ใช้เทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ในงานวิจัยทางด้านประสาทวิทยาการศึกษา
Application of the Near-Infrared Spectroscopy Technique in Neuroeducation Research
Abstract
ในช่วงทศวรรษที่ผ่านมางานวิจัยด้านประสาทวิทยาการศึกษาได้เติบโตขึ้นอย่างต่อเนื่อง โดยมุ่งทำความเข้าใจกลไกการทำงานของสมองที่เกี่ยวข้องกับกระบวนการเรียนรู้ของมนุษย์ เพื่อพัฒนาแนวทางการเรียนการสอนที่มีประสิทธิภาพยิ่งขึ้นหนึ่งในเทคนิคที่ได้รับความสนใจคือเทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ (Near-Infrared Spectroscopy; NIRS) ซึ่งเป็นเครื่องมือถ่ายภาพสมองแบบไม่รุกรานที่สามารถตรวจวัดการเปลี่ยนแปลงของออกซีฮีโมโกลบินและดีออกซีฮีโมโกลบินในสมองได้แบบเรียลไทม์ บทความนี้นำเสนอแนวคิดในการประยุกต์ใช้เทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ ในงานวิจัยด้านประสาทวิทยาการศึกษา ซึ่งเป็นสาขาที่บูรณาการระหว่างประสาทวิทยาศาสตร์ จิตวิทยาการศึกษา และการจัดการเรียนรู้ โดยอธิบายหลักการทำงานของเทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ ข้อดีและข้อจำกัดของเทคนิคนี้ ตลอดจนยกตัวอย่างการประยุกต์ใช้เทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ ในงานวิจัยด้านการเรียนรู้ การประเมินพัฒนาการ ทักษะการรู้คิด การเรียนรู้ร่วม และภาวะบกพร่องในการเรียนรู้ เพื่อนำเสนอแนวโน้มการประยุกต์ใช้เทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ ในฐานะเครื่องมือที่ช่วยเสริมสร้างความเข้าใจเชิงลึกเกี่ยวกับกระบวนการเรียนรู้ในช่วงวัยต่าง ๆ และสนับสนุนการออกแบบการจัดการเรียนรู้ที่เหมาะสมยิ่งขึ้น
Over the past decade, research in neuroeducation has continuously expanded, aiming to understand the brain mechanisms underlying human learning processes and to develop more effective teaching and learning approaches. One of the techniques that has attracted increasing interest is Near-Infrared Spectroscopy (NIRS), a non-invasive neuroimaging tool capable of measuring real-time changes in oxyhemoglobin and deoxyhemoglobin concentrations in the brain. This article presents the concept of applying NIRS in neuroeducation research, an interdisciplinary field that integrates neuroscience, educational psychology, and instructional practices. It describes the fundamental principles of NIRS, its advantages and limitations, and provides examples of its applications in studies on learning processes, developmental assessment, cognitive skills, collaborative learning, and learning disabilities. This work also discusses the emerging trends in utilizing NIRS as a promising tool to deepen our understanding of learning processes across different developmental stages and to support the design of more effective and developmentally appropriate educational practices.
Keywords
[1] D. Ansari, B. D. Smedt, and R. H. Grabner, “Neuroeducation – a critical overview of an emerging field,” Neuroethics, vol. 5, no. 2, pp. 105–117, 2012, doi: 10.1007/s12152-011- 9119-3.
[2] K. W. Fischer, D. B. Daniel, M. H. Immordino- Yang, E. Stern, A. Battro, and H. Koizumi, “Why mind, brain, and education? why now?,” Mind, Brain, and Education, vol. 1, no. 1, pp. 1–2, 2007, doi: 10.1111/j.1751-228X.2007.00006.x.
[3] B. M. Samuels, “Can the differences between education and neuroscience be overcome by mind, brain, and education?,” Mind, Brain, and Education, vol. 3, no. 1, pp. 45–55, 2009, doi: 10.1111/j.1751-228X.2008.01052.x.
[4] M. S. C. Thomas, D. Ansari, and V. C. P. Knowland, “Annual research review: Educational neuroscience: Progress and prospects,” 2019, Blackwell Publishing Ltd, doi: 10.1111/ jcpp.12973.
[5] K. Pradeep, R. S. Anbalagan, A. P. Thangavelu, S. Aswathy, V. G. Jisha, and V. S. Vaisakhi, “Neuroeducation: Understanding neural dynamics in learning and teaching,” Frontiers in Education, vol. 9, pp. 1437418, 2024, doi: 10.3389/feduc.2024.1437418.
[6] C. Mulert, “EEG–fMRI integration for the study of human brain function,” NeuroImage, vol. 102, pp. 1–5, 2013.
[7] M. L. Seghier, M. A. Fahim, and C. Habak, “Educational fMRI: From the lab to the classroom,” Frontiers in Psychology, vol. 10, pp. 2769, 2019, doi: 10.3389/fpsyg.2019.02769.
[8] J. Xu and B. Zhong, “Review on portableEEG technology in educational research,” Computers in Human Behavior, vol. 81, pp. 340–349, 2018, doi: 10.1016/j.chb.2017. 12.037.
[9] S. Cutini, S. B. Moro, and S. Bisconti, “Review: Functional near infrared optical imaging in cognitive neuroscience: An introductory review,” Journal of Near Infrared Spectroscopy, vol. 20, no. 1, pp. 75–92, 2012, doi: 10.1255/jnirs.969.
[10] P. Pinti, I. Tachtsidis, A. Hamilton, J. Hirsch, C. Aichelburg, S. Gilbert, and P. W. Burgess, “The present and future use of Functional Near-Infrared Spectroscopy (fNIRS) for cognitive neuroscience,” Annals of the New York Academy of Sciences, vol. 1464, no. 1, pp. 5–29, 2020, doi: 10.1111/nyas.13948.
[11] Z. Zhan, Q. Yang, L. Luo, and X. Zhang, “Applying Functional Near-Infrared Spectroscopy (fNIRS) in educational research: A systematic review,” Current Psychology, vol. 43, no. 11, pp. 9676–9691, 2024, doi: 10.1007/s12144- 023-05094-y.
[12] T. Dresler, A. Obersteiner, M. Schecklmann, A. C. M. Vogel, A. C. Ehlis, M. M. Richter, M. M. Plichta, K. Reiss, R. Pekrun, and A. J. Fallgatter, “Arithmetic tasks in different formats and their Influence on behavior and brain oxygenation as assessed with Near-Infrared Spectroscopy (NIRS): A study involving primary and secondary school children,” Journal of Neural Transmission, vol. 116, no. 12, pp. 1689–1700, 2009, doi: 10.1007/s00702-009-0307-9.
[13] T. Tando, Y Kaga, S. Ishii, K. Aoyagi, F. Sano, H. Kanemura, K. Sugita, and M. Aihara, “Developmental changes in frontal lobe function during a verbal fluency task: A multi-channel near-infrared spectroscopy study,” Brain and Development, vol. 36, no. 10, pp. 844–852, 2014, doi: 10.1016/j.braindev.2014.01.002.
[14] K. Lertladaluck and Y. Moriguchi, “Executive functions and theory of mind development in preschoolers: Insights from NIRS data,” Neuropsychologia, vol. 205, pp. 109031, 2024, doi: 10.1016/j.neuropsychologia.2024.109031.
[15] N. Takeuchi, T. Mori, Y. Suzukamo, and S. Izumi, “Activity of prefrontal cortex in teachers and students during teaching of an insight problem,” Mind, Brain, and Education, vol. 13, no. 3, pp. 167–175, 2019, doi: 10.1111/mbe.12207.
[16] Y. Zhang, W. Guo, A. N. Tara, X. Cao, H. Wu, and H. Shi, “The effects of different instructional strategies on the college students’ critical thinking learning experience and neural correlates using functional near-infrared spectroscopy,” Education and Information Technologies, vol. 30, pp. 20467–20494, 2025, doi: 10.1007/ s10639-025-13566-w.
[17] K. Lertladaluck, N. Chutabhakdikul, N. Chevalier, and Y. Moriguchi, “Effects of social and nonsocial reward on executive function in preschoolers,” Brain and Behavior, vol. 10, no. 9, pp. e01763, 2020, doi: 10.1002/brb3.1763.
[18] Y. Moriguchi and K. Lertladaluck, “Bilingual effects on cognitive shifting and prefrontal activations in young children,” International Journal of Bilingualism, vol. 24, no. 4, pp. 729–739, 2020, doi: 10.1177/1367006 91988027.
[19] G. Brockington, J. B. Balardin, G. A. Z. Morais, A. Malheiros, R. Lent, L. M. Moura, and J. R.Sato, “From the laboratory to the classroom: The potential of functional near-infrared spectroscopy in educational neuroscience,” Frontiers in Psychology, vol. 9, pp. 1–7, 2018, doi: 10.3389/fpsyg.2018.01840.
[20] R. Song, J. Zhang, B. Wang, H. Zhang, and H. Wu, “A near-infrared brain function study of chinese dyslexic children,” Neurocase, vol. 19, no. 4, pp. 382–389, 2013, doi: 10.1080/13554794.2012.690422.
[21] F. Liu, X. Chi, and D. Yu, “Reduced inhibition control ability in children with ADHD due to coexisting learning disorders: An fNIRS study,” Frontiers in Psychiatry, vol. 15, no. 1326341, pp. 1–11, 2024, doi: 10.3389/fpsyt.2024.1326341.
[22] W. L. Chen, J. Wagner, N. Heugel, J. Sugar, Y. W. Lee, L. Conant, M. Malloy, J. Heffernan, B. Quirk, A. Zinos, S. A. Beardsley, R. Prost, and H. T. Whelan, “Functional near-infrared spectroscopy and Its clinical application in the field of neuroscience: Advances and future directions,” Frontiers in Neuroscience, vol. 14, 2020, doi: 10.3389/fnins.2020.00724.
[23] L. Kaplan, B. W. Chow, and C. Gu, “Neuronal regulation of the blood–brain barrier and neurovascular coupling,” Nature Reviews Neuroscience, vol. 21, no. 8, pp. 416–432, 2020, doi: 10.1038/s41583-020-0322-2.
[24] C. Huneau, H. Benali, and H. Chabriat, “Investigating human neurovascular coupling using functional neuroimaging: A critical review of dynamic models,” Frontiers in Neuroscience, vol. 9, pp. 467, 2015, doi: 10.3389/fnins. 2015.00467.
[25] V. Quaresima and M. Ferrari, “A mini-review on Functional Near-Infrared Spectroscopy (fNIRS): Where do we stand, and where should we go?,” Photonics, vol. 6, no. 3, pp. 87, 2019.
[26] B. Burle, L. Spieser, C. Roger, L. Casini, T. Hasbroucq, and F. Vidal, “Spatial and temporal resolutions of EEG: Is it really black and white? a scalp current density view,” International Journal of Psychophysiology, vol. 97, no. 3, pp. 210–220, 2015 , doi: 10.1016/j.ijpsycho.2015.05.004.
[27] W. C. Su, R. Colacot, N. Ahmed, T. Nguyen, T. George, and A. Gandjbakhche, “The use of functional near-infrared spectroscopy in tracking neurodevelopmental trajectories in infants and children with or without developmental disorders: A systematic review,” Frontiers in Psychiatry, vol. 14, no. 1210000, pp. 1–15, 2023, doi: 10.3389/fpsyt. 2023.1210000.
[28] J. Jirout, J. LoCasale-Crouch, K. Turnbull, Y. Gu, M. Cubides, S. Garzione, T. M. Evans, A. L. Weltman, and S. Kranz, “How lifestyle factors affect cognitive and executive function and the ability to learn in children,” Nutrients, vol. 11, no. 8, pp. 1–29, 2019, doi: 10.3390/nu 11081953.
[29] J. Zhang, Y. Wang, C. Leong, Y. Mao, and Z. Yuan, “Bridging stories and science: An fNIRS-Based hyperscanning investigation into child learning in STEM,” Neuroimage, vol. 285, pp. 120486, 2024, doi: 10.1016/ j.neuroimage.2023.120486.
[30] J. M. Black, C. A. Myers, and F. Hoeft, “The utility of neuroimaging studies for informingeducational practice and policy in reading disorders,” New Directions for Child and Adolescent Development, vol. 2015, no. 147, pp. 49–56, 2015, doi: 10.1002/cad.20086.
[31] E. Conti, E. Scaffei, C. Bosetti, V. Marchi, V. Costanzo, V. Dell’Oste, R. Mazziotti, L. Dell’Osso, C. Carmassi, F. Muratori, L. Baroncelli, S. Calderoni, and R. Battini, “Looking for ‘fNIRS signature’ in autism spectrum: A systematic review starting from preschoolers,” Frontiers in Neuroscience, vol. 16, pp. 1–13, 2022, doi: 10.3389/fnins. 2022.785993.
DOI: 10.14416/j.kmutnb.2026.02.001
ISSN: 2985-2145




